DOI QR코드

DOI QR Code

REGULARITIES OF MULTIFRACTAL HEWITT-STROMBERG MEASURES

  • Attia, Najmeddine (Department of Mathematics Faculty of Sciences of Monastir) ;
  • Selmi, Bilel (Department of Mathematics Faculty of Sciences of Monastir)
  • Received : 2018.01.24
  • Accepted : 2018.07.24
  • Published : 2019.01.31

Abstract

We construct new metric outer measures (multifractal analogues of the Hewitt-Stromberg measure) $H^{q,t}_{\mu}$ and $P^{q,t}_{\mu}$ lying between the multifractal Hausdorff measure ${\mathcal{H}}^{q,t}_{\mu}$ and the multifractal packing measure ${\mathcal{P}}^{q,t}_{\mu}$. We set up a necessary and sufficient condition for which multifractal Hausdorff and packing measures are equivalent to the new ones. Also, we focus our study on some regularities for these given measures. In particular, we try to formulate a new version of Olsen's density theorem when ${\mu}$ satisfies the doubling condition. As an application, we extend the density theorem given in [3].

Keywords

References

  1. N. Attia, Relative multifractal spectrum, Commun. Korean Math. Soc. 33 (2018), no. 2, 459-471. https://doi.org/10.4134/CKMS.C170143
  2. N. Attia, B. Selmi, and C. Souissi, Some density results of relative multifractal analysis, Chaos Solitons Fractals 103 (2017), 1-11. https://doi.org/10.1016/j.chaos.2017.05.029
  3. H. K. Baek, Regularities of multifractal measures, Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no. 2, 273-279. https://doi.org/10.1007/s12044-008-0019-3
  4. H. K. Baek and H. H. Lee, Regularity of d-measure, Acta Math. Hungar. 99 (2003), no. 1-2, 25-32. https://doi.org/10.1023/A:1024597010100
  5. C. D. Cutler, The density theorem and Hausdorff inequality for packing measure in general metric spaces, Illinois J. Math. 39 (1995), no. 4, 676-694. https://doi.org/10.1215/ijm/1255986272
  6. G. A. Edgar, Integral, Probability, and Fractal Measures, Springer-Verlag, New York, 1998.
  7. G. A. Edgar, Centered densities and fractal measures, New York J. Math. 13 (2007), 33-87.
  8. K. Falconer, Fractal Geometry, second edition, John Wiley & Sons, Inc., Hoboken, NJ, 2003.
  9. H. Haase, A contribution to measure and dimension of metric spaces, Math. Nachr. 124 (1985), 45-55. https://doi.org/10.1002/mana.19851240104
  10. H. Haase, Open-invariant measures and the covering number of sets, Math. Nachr. 134 (1987), 295-307. https://doi.org/10.1002/mana.19871340121
  11. E. Hewitt and K. Stromberg, Real and Abstract Analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965.
  12. S. Jurina, N. MacGregor, A. Mitchell, L. Olsen, and A. Stylianou, On the Hausdorff and packing measures of typical compact metric spaces, Aequationes Math. 92 (2018), no. 4, 709-735. https://doi.org/10.1007/s00010-018-0548-5
  13. H. H. Lee and I. S. Baek, The relations of Hausdorff, *-Hausdorff, and packing measures, Real Anal. Exchange 16 (1990/91), no. 2, 497-507. https://doi.org/10.2307/44153728
  14. H. H. Lee and I. S. Baek, On d-measure and d-dimension, Real Anal. Exchange 17 (1991/92), no. 2, 590-596. https://doi.org/10.2307/44153752
  15. H. H. Lee and I. S. Baek, The relations of Hausdorff, *-Hausdorff, and packing measures, Real Anal. Exchange 16 (1990/91), no. 2, 497-507. https://doi.org/10.2307/44153728
  16. P. Mattila, Geometry of sets and Measures in Euclidian Spaces: Fractals and Rectifiabilitys, Cambridge University Press, Cambridge, 1995.
  17. P. Mattila, The Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge, 1995.
  18. P. Mattila and R. D. Mauldin, Measure and dimension functions: measurability and densities, Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 1, 81-100. https://doi.org/10.1017/S0305004196001089
  19. A. P. Morse and J. F. Randolph, The ${\phi}$ rectifiable subsets of the plane, Trans. Amer. Math. Soc. 55 (1944), 236-305. https://doi.org/10.1090/S0002-9947-1944-0009975-6
  20. L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), no. 1, 82-196. https://doi.org/10.1006/aima.1995.1066
  21. L. Olsen, Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures, Math. Scand. 86 (2000), no. 1, 109-129. https://doi.org/10.7146/math.scand.a-14284
  22. Y. B. Pesin, Dimension Theory in Dynamical Systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997.
  23. X. Saint Raymond and C. Tricot, Packing regularity of sets in n-space, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 1, 133-145. https://doi.org/10.1017/S0305004100064690
  24. B. Selmi, On the strong regularity with the multifractal measures in a probability space, Preprint, 2017.
  25. B. Selmi, Some results about the regularities of multifractal measures, Korean J. Math., To appear.
  26. B. Selmi, Measure of relative multifractal exact dimensions, Advances and Applications in Mathematical Sciences, To appear.
  27. S. J. Taylor and C. Tricot, Packing measure, and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), no. 2, 679-699. https://doi.org/10.1090/S0002-9947-1985-0776398-8
  28. S. J. Taylor and C. Tricot, The packing measure of rectifiable subsets of the plane, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 2, 285-296. https://doi.org/10.1017/S0305004100064203
  29. O. Zindulka, Packing measures and dimensions on Cartesian products, Publ. Mat. 57 (2013), no. 2, 393-420. https://doi.org/10.5565/PUBLMAT_57213_06