DOI QR코드

DOI QR Code

Wheat Blast in Bangladesh: The Current Situation and Future Impacts

  • Islam, M. Tofazzal (Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University) ;
  • Kim, Kwang-Hyung (Department of Climate Service and Research, APEC Climate Center) ;
  • Choi, Jaehyuk (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
  • Received : 2018.08.21
  • Accepted : 2018.10.14
  • Published : 2019.02.01

Abstract

Wheat blast occurred in Bangladesh for the first time in Asia in 2016. It is caused by a fungal pathogen, Magnaporthe oryzae Triticum (MoT) pathotype. In this review, we focused on the current status of the wheat blast in regard to host, pathogen, and environment. Despite the many efforts to control the disease, it expanded to neighboring regions including India, the world's second largest wheat producer. However, the disease occurrence has definitely decreased in quantity, because of many farmers chose to grow alternate crops according to the government's directions. Bangladesh government planned to introduce blast resistant cultivars but knowledges about genetics of resistance is limited. The genome analyses of the pathogen population revealed that the isolates caused wheat blast in Bangladesh are genetically close to a South American lineage of Magnaporthe oryzae. Understanding the genomes of virulent strains would be important to find target resistance genes for wheat breeding. Although the drier winter weather in Bangladesh was not favorable for development of wheat blast before, recent global warming and climate change are posing an increasing risk of disease development. Bangladesh outbreak in 2016 was likely to be facilitated by an extraordinary warm and humid weather in the affected districts before the harvest season. Coordinated international collaboration and steady financial supports are needed to mitigate the fearsome wheat blast in South Asia before it becomes a catastrophe.

Keywords

E1PPBG_2019_v35n1_1_f0001.png 이미지

Fig. 1. World wheat production. (A) World wheat production by continents. Average values during 2014-2016 were used for the graph. (B) Top ten wheat producing countries. All data were obtained from FAOSTAT (http://www.fao.org/faostat/en/#data/QC).

E1PPBG_2019_v35n1_1_f0002.png 이미지

Fig. 2. Symptoms of wheat blast and burning of a wheat blast infected field. (A) Complete bleaching of four wheat spikes above the point of infection collected from a blast infected field of Meherpur in Bangladesh in 2018, (B) Complete bleaching of five wheat spikes above the point of infection collected from a suspected blast infected field of West Bengal in India in 2017 (photo generously provided by Sunita Mahapatra, Bidhan Chandra Krishi Viswavidyalaya, India, (C) Typical eye-shaped lesions and dark gray spots on a severely diseased wheat leaf, (D) Severe blast-affected shriveled and pale wheat seeds cv. Prodip, (E) Clearing of a severely blast affected field of wheat in Chuadanga, Bangladesh by burning (see a video clip at https://www.youtube.com/watch?v=EmL5YM0kIok).

E1PPBG_2019_v35n1_1_f0003.png 이미지

Fig. 3. Effects of climate change on the Bangladesh outbreak of wheat blast in 2016. (A) Temperature anomalies of February from 2014 to 2017 in the India-Bangladesh region. The temperature anomaly indicates a departure of monthly mean temperature from long-term average, and therefore a positive anomaly means that the observed temperature was warmer than the long-term average value. Figures were generated based on the NOAA global surface temperature anomaly dataset, produced by the United States National Center of Environmental Information in 2018 (Smith et al., 2008). (B) Calculation of the modified DFI (day favouring infection) index for the wheat blast-infected regions in 2016. To estimate infection risk for the wheat blast disease, we adopted the DFI index by Fernandes et al. (2017) as an infection risk proxy, which was modified based on the availability of weather variables from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) climate data (Gelaro et al., 2017). Daily maximum temperature and precipitation variables of the MERRA-2 for 2015-2018 were extracted from eight overlapping grids over the target districts of Bangladesh (latitudes 22° 49' 43.5468" N to 24° 21' 48.258" N and longitudes 88° 33' 29.8224" E to 89° 43' 42.294" E), where severe wheat blast epidemics were reported in 2016. The modified DFI index is the number of days with maximum temperature > 23°C and rainfall > 0.1 mm for the period of January to February.

Table 1. The list of resistance genes identified in wheat cultivars

E1PPBG_2019_v35n1_1_t0001.png 이미지

References

  1. Anh, V. L., Anh, N. T., Tagle, A. G., Vy, T. T. P., Inoue, Y., Takumi, S., Chuma, I. and Tosa, Y. 2015. Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology 105:1568-1572. https://doi.org/10.1094/PHYTO-02-15-0034-R
  2. Anh, V. L., Inoue, Y., Asuke, S., Vy, T. T. P., Anh, N. T., Wang, S., Chuma, I. and Tosa, Y. 2018. Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. Mol. Plant Pathol. 19:1252-1256. https://doi.org/10.1111/mpp.12609
  3. Asseng, S., Ewert, F., Martre, P., Rotter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. A., Izaurralde, R. C., Jabloun, M., Jones, C. D., Kersebaum, K. C., Koehler, A. K., Muller, C., Kumar, S. N., Nendel, C., O'Leary, G., Olesen, J. E., Palosuo, T., Priesack, E., Rezaei, E. E., Ruane, A. C., Semenov, M. A., Shcherbak, I., Stockle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P. J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z. and Zhu, Y. 2015. Rising temperatures reduce global wheat production. Nat. Clim. Change 5:143-147. https://doi.org/10.1038/nclimate2470
  4. Bhowmik, P., Ellison, E., Polley, B., Bollina, V., Kulkarni, M., Ghanbarnia, K., Song, H., Gao, C., Voytas, D. F. and Kagale, S. 2018. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci. Rep. 8:6502. https://doi.org/10.1038/s41598-018-24690-8
  5. Callaway, E. 2016. Devastating wheat fungus appears in Asia for first time. Nature 532:421-422. https://doi.org/10.1038/532421a
  6. Cardoso, C. A. d. A., Reis, E. M. and Moreira, E. N. 2008. Development of a warning system for wheat blast caused by Pyricularia grisea. Summa Phytopathol. 34:216-221. https://doi.org/10.1590/S0100-54052008000300002
  7. Castroagudin, V. L., Ceresini, P. C., de Oliveira, S. C., Reges, J. T., Maciel, J. L., Bonato, A. L., Dorigan, A. F. and McDonald, B. A. 2015. Resistance to QoI fungicides is widespread in Brazilian populations of the wheat blast pathogen Magnaporthe oryzae. Phytopathology 105:284-294. https://doi.org/10.1094/PHYTO-06-14-0184-R
  8. Ceresini, P. C., Castroagudin, V. L., Rodrigues, F. A., Rios, J. A., Eduardo Aucique-Perez, C., Moreira, S. I., Alves, E., Croll, D. and Maciel, J. L. N. 2018. Wheat blast: past, present, and future. Annu. Rev. Phytopathol. 56:427-256. https://doi.org/10.1146/annurev-phyto-080417-050036
  9. Cruz, C. D., Peterson, G. L., Bockus, W. W., Kankanala, P., Dubcovsky, J., Jordan, K. W., Akhunov, E., Chumley, F., Baldelomar, F. D. and Valent, B. 2016. The 2NS translocation from aegilops ventricosa confers resistance to the triticum pathotype of Magnaporthe oryzae. Crop Sci. 56:990-1000. https://doi.org/10.2135/cropsci2015.07.0410
  10. Dutta, S., Surovy, M. Z., Gupta, D. R., Mahmud, N. U., Chanclud, E., Win, J., Kamoun, S. and Islam, T. 2018. Genomic analyses reveal that biocontrol of wheat blast by Bacillus spp. may be linked with production of antimicrobial compounds and induced systemic resistance in host plants. Figshare doi: 10.6084/m9.figshare.5852661.v1.
  11. Farman, M., Peterson, G., Chen, L., Starnes, J., Valent, B., Bachi, P., Murdock, L., Hershman, D., Pedley, K., Fernandes, J. M. and Bavaresco, J. 2017. The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States. Plant Dis. 101:684-692. https://doi.org/10.1094/PDIS-05-16-0700-RE
  12. Fernandes, J. M. C., Nicolau, M., Pavan, W., Holbig, C. A., Karrei, M., de Vargas, F., Bavaresco, J. L. B., Lazzaretti, A. T. and Tsukahara, R. Y. 2017. A weather-based model for predicting early season inoculum build-up and spike infection by the wheat blast pathogen. Trop. Plant Pathol. 42:230-237. https://doi.org/10.1007/s40858-017-0164-2
  13. Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L. and Gurr, S. J. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186-194. https://doi.org/10.1038/nature10947
  14. Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M. and Zhao, B. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30:5419-5454. https://doi.org/10.1175/JCLI-D-16-0758.1
  15. Gladieux, P., Condon, B., Ravel, S., Soanes, D., Maciel, J. L. N., Nhani, A., Chen, L., Terauchi, R., Lebrun, M. H., Tharreau, D., Mitchell, T., Pedley, K. F., Valent, B., Talbot, N. J., Farman, M. and Fournier, E. 2017. Gene flow between divergent cerealand grass-specific lineages of the rice blast fungus Magnaporthe oryzae. mBio 9:e01219-01217.
  16. Gupta, D. R., Avila, C. S. R., Win, J., Soanes, D. M., Ryder, L. S., Croll, D., Bhattacharjee, P., Hossain, M. S., Mahmud, N. U., Mehbub, M. S., Surovy, M. Z., Talbot, N. J., Kamoun, S. and Islam, M. T. 2018. The MoT3 assay does not distinguish between Magnaporthe oryzae wheat and rice blast isolates from Bangladesh. Phytopathology doi: 10.1094/PHYTO-06-18-0199-LE. (in Press)
  17. Ha, X., Koopmann, B. and von Tiedemann, A. 2016. Wheat blast and Fusarium head blight display contrasting interaction patterns on ears of wheat genotypes differing in resistance. Phytopathology 106:270-281. https://doi.org/10.1094/PHYTO-09-15-0202-R
  18. Haque, E., Taniguchi, H., Hassan, M. M., Bhowmik, P., Karim, M. R., Smiech, M., Zhao, K., Rahman, M. and Islam, T. 2018. Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: Recent progress, prospects, and challenges. Front. Plant Sci. 9:617. https://doi.org/10.3389/fpls.2018.00617
  19. Hossain, A. and da Silva, J. A. T. 2012. Wheat production in Bangladesh: its future in the light of global warming. AoB. Plants 5:pls042.
  20. Igarashi, S., Utiamada, C. M., Igarashi, L. C., Kazuma, A. H. and Lopes, R. S. 1986. Pyricularia em trigo. 1. Ocorrencia de Pyricularia sp. no estado do Parana. Fitopatol. Bras. 11:351-352 (in Portugues).
  21. Inoue, Y., Vy, T. T. P., Yoshida, K., Asano, H., Mitsuoka, C., Asuke, S., Anh, V. L., Cumagun, C. J. R., Chuma, I., Terauchi, R., Kato, K., Mitchell, T., Valent, B., Farman, M. and Tosa, Y. 2017. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357:80-83. https://doi.org/10.1126/science.aam9654
  22. Islam, M. T., Croll, D., Gladieux, P., Soanes, D. M., Persoons, A., Bhattacharjee, P., Hossain, M. S., Gupta, D. R., Rahman, M. M., Mahboob, M. G., Cook, N., Salam, M. U., Surovy, M. Z., Sancho, V. B., Maciel, J. L. N., NhaniJunior, A., Castroagudin, V. L., de Assis Reges, J. T., Ceresini, P. C., Ravel, S., Kellner, R., Fournier, E., Tharreau, D., Lebrun, M. H., McDonald, B. A., Stitt, T., Swan, D., Talbot, N. J., Saunders, D. G. O., Win, J. and Kamoun, S. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 14:84. https://doi.org/10.1186/s12915-016-0309-7
  23. Kato, H., Yamamoto, M., Yamaguchi-Ozaki, T., Kadouchi, H., Iwamoto, Y., Nakayashiki, H., Tosa, Y., Mayama, S. and Mori, N. 2000. Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. J. Gen. Plant Pathol. 66:30-47. https://doi.org/10.1007/PL00012919
  24. Kohli, M. M., Mehta, Y. R., Guzman, E., De Viedma, L. and Cubilla, L. E. 2011. Pyricularia blast - a threat to wheat cultivation. Czech J. Genet. Plant. Breed. 47:S130-S134. https://doi.org/10.17221/3267-CJGPB
  25. Langner, T., Kamoun, S. and Belhaj, K. 2018. CRISPR crops: Plant genome editing toward disease resistance. Annu. Rev. Phytopathol. 56:479-512. https://doi.org/10.1146/annurev-phyto-080417-050158
  26. Maciel, J. L. 2011. Magnaporthe oryzae, the blast pathogen: current status and options for its control. CAB Rev. 6:1-8. https://doi.org/10.1079/PAVSNNR20116050
  27. Maciel, J. L., Ceresini, P. C., Castroagudin, V. L., Zala, M., Kema, G. H. and McDonald, B. A. 2014. Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 104:95-107. https://doi.org/10.1094/PHYTO-11-12-0294-R
  28. Malaker, P. K., Barma, N. C. D., Tiwari, T. P., Collis, W. J., Duveiller, E., Singh, P. K., Joshi, A. K., Singh, R. P., Braun, H.-J., Peterson, G. L., Pedley, K. F., Farman, M. L. and Valent, B. 2016. First report of wheat blast caused by Magnaporthe oryzae pathotype triticum in Bangladesh. Plant Dis. 100:2330.
  29. Marangoni, M. S., Nunes, M. P., Fonseca, N. and Mehta, Y. R. 2013. Pyricularia blast on white oats - a new threat to wheat cultivation. Trop. Plant Pathol. 38:198-202. https://doi.org/10.1590/S1982-56762013005000004
  30. Miah, M. A. M., Haque, A. K. E. and Hossain, S. 2014. Economic impact of climate change on wheat productivity in Bangladesh: A Ricardian approach. In: Science, Policy and Politics of Modern Agricultural System, eds. by M. Behnassi, S. A. Shahid and N. Mintz-Habib, pp. 97-108. Springer, Dordrecht, Nederland.
  31. Mottaleb, K. A., Singh, P. K., Sonder, K., Kruseman, G., Tiwari, T. P., Barma, N. C. D., Malaker, P. K., Braun, H. J. and Erenstein, O. 2018. Threat of wheat blast to South Asia's food security: An ex-ante analysis. PLoS One 13:e0197555. https://doi.org/10.1371/journal.pone.0197555
  32. Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D. and Kamoun, S. 2017. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 7:482. https://doi.org/10.1038/s41598-017-00578-x
  33. Nga, N., Hau, V. T. and Tosa, Y. 2009. Identification of genes for resistance to a Digitaria isolate of Magnaporthe grisea in common wheat cultivars. Genome 52:801-809. https://doi.org/10.1139/G09-054
  34. Pagani, A. P. S., Dianese, A. C. and Cafe-Filho, A. C. 2014. Management of wheat blast with synthetic fungicides, partial resistance and silicate and phosphite minerals. Phytoparasitica 42:609-617. https://doi.org/10.1007/s12600-014-0401-x
  35. Peng, A. H., Chen, S. C., Lei, T. G., Xu, L. Z., He, Y. R., Wu, L., Yao, L. X. and Zou, X. P. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 15:1509-1519. https://doi.org/10.1111/pbi.12733
  36. Pennisi, E. 2010. Armed and dangerous. Science 327:804-805. https://doi.org/10.1126/science.327.5967.804
  37. Pieck, M. L., Ruck, A., Farman, M. L., Peterson, G. L., Stack, J. P., Valent, B. and Pedley, K. F. 2017. Genomics-based marker discovery and diagnostic assay development for wheat blast. Plant Dis. 101:103-109. https://doi.org/10.1094/PDIS-04-16-0500-RE
  38. Sadat, M. A. and Choi, J. 2017. Wheat blast: A new fungal inhabitant to Bangladesh threatening world wheat production. Plant Pathol. J. 33:103-108. https://doi.org/10.5423/PPJ.RW.09.2016.0179
  39. Smith, T. M., Reynolds, R. W., Peterson, T. C. and Lawrimore, J. 2008. Improvements to NOAA's historical merged land- ocean surface temperature analysis (1880-2006). J. Clim. 21:2283-2296. https://doi.org/10.1175/2007JCLI2100.1
  40. Surovy, M. Z., Gupta, D. R., Chanclud, E., Win, J., Kamoun, S. and Islam, T. 2017. Plant probiotic bacteria suppress wheat blast fungus Magnaporthe oryzae Triticum pathotype. Figshare doi: 10.6084/m9.figshare.5549278.v1.
  41. Tagle, A. G., Chuma, I. and Tosa, Y. 2015. Rmg7, a new gene for resistance to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat. Phytopathology 105:495-499. https://doi.org/10.1094/PHYTO-06-14-0182-R
  42. Takabayashi, N., Tosa, Y., Oh, H. S. and Mayama, S. 2002. A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars. Phytopathology 92:1182-1188. https://doi.org/10.1094/PHYTO.2002.92.11.1182
  43. Vales, M., Anzoategui, T., Huallpa, B. and Cazon, M. I. 2018. Review on resistance to wheat blast disease (Magnaporthe oryzae Triticum) from the breeder point-of-view: use of the experience on resistance to rice blast disease. Euphytica 214:1. https://doi.org/10.1007/s10681-017-2087-x
  44. Vy, T. T. P., Hyon, G.-S., Nga, N. T. T., Inoue, Y., Chuma, I. and Tosa, Y. 2014. Genetic analysis of host-pathogen incompatibility between Lolium isolates of Pyricularia oryzae and wheat. J. Gen. Plant Pathol. 80:59-65. https://doi.org/10.1007/s10327-013-0478-y
  45. Wang, F. J., Wang, C. L., Liu, P. Q., Lei, C. L., Hao, W., Gao, Y., Liu, Y. G. and Zhao, K. J. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:e0154027. https://doi.org/10.1371/journal.pone.0154027
  46. Wang, S., Asuke, S., Vy, T. T. P., Inoue, Y., Chuma, I., Win, J., Kato, K. and Tosa, Y. 2018. A new resistance gene in combination with Rmg8 confers strong resistance against Triticum isolates of Pyricularia oryzae in a common wheat landrace. Phytopathology 108:1299-1306. https://doi.org/10.1094/PHYTO-12-17-0400-R
  47. Wulff, B. B. H. and Dhugga, K. S. 2018. Wheat-the cereal abandoned by GM. Science 361:451-452. https://doi.org/10.1126/science.aat5119
  48. Zhan, S., Mayama, S. and Tosa, Y. 2008. Identification of two genes for resistance to Triticum isolates of Magnaporthe oryzae in wheat. Genome 51:216-221. https://doi.org/10.1139/G07-094