DOI QR코드

DOI QR Code

Design and manufacture of eyeball protrusion measuring device using white light scanning interferometer

백색광 간섭계를 이용한 안구 돌출 측정 장치 설계 및 제작

  • Chang, Jung-soo (Department of Bio Medical Engineering, Ajou University) ;
  • Kim, Young-kil (Department of Electronic Engineering, Ajou University)
  • Received : 2018.11.28
  • Accepted : 2018.12.21
  • Published : 2019.01.31

Abstract

The relative position of the orbital eye can be a criterion for evaluating several pathological conditions. It is especially useful to diagnose orbital fractures, thyroid eye disease, orbital tumors and to evaluate the outcome of medication and surgical treatment. Hertel and Naugle are representative measurement tools used to measure eyeball protrusion values, and have different measurement results, such as fixed orbits, every time they are inspected, even if the same inspector repeatedly measures them. Even with the same calibrator, it is inevitable that different manufacturers will change the design of the stationary part of the orbit, causing the surveyor to make a measurement error. In this paper, we designed and fabricated a protrusion measuring device using a white light interferometer and measured the protrusion of the human eye and found that the precision and repeatability were significantly higher than the manual measurement method.

안와 내에서 안구의 상대적 위치는 여러 병적인 상태를 짐작할 수 있는 하나의 기준이 될 수 있다. 특히 안와골절, 갑상선 안질환, 안와 종양 등의 진단과 이에 약물 및 수술적 치료의 결과를 판단하는데 유용하다. 현재 안구 돌출 값을 측정하기 위해 주로 사용되는 대표적 측정 기기인 Hertel과 Naugle 안구돌출계 등은 검사자가 다를 경우, 같은 검사자가 반복적으로 측정하더라도 검사할 때마다 안와의 고정부위가 달라지는 현상, 또한 동일한 안구돌출계라고 하더라도 제조 회사가 다르다면 안와의 고정부위 디자인이 달라 검사자에 의한 측정 오차 발생이 필연적이다. 본 논문에서는 백색광 간섭계를 이용한 안구 돌출 측정 장치를 설계 및 제작하고 실제 사람의 안구 돌출을 측정하여 수동식 측정 방법에 비해 정밀도 및 반복 정도가 크게 높아진 것을 확인하였다.

Keywords

HOJBC0_2019_v23n1_63_f0001.png 이미지

Fig. 1 Measuring Scene

HOJBC0_2019_v23n1_63_f0002.png 이미지

Fig. 2 System configuration; (a) Measuring apparatus,(b) Face fixation unit, (c) Power and Drivers,(d) Control unit - PC System, (e) Measuring program

HOJBC0_2019_v23n1_63_f0003.png 이미지

Fig. 3 Measuring method; (a) Measuring point, (b) Defining Positions for Scanning

HOJBC0_2019_v23n1_63_f0004.png 이미지

Fig. 4 Measurement section and the movement of the motion

Table. 1 specification of WSI

HOJBC0_2019_v23n1_63_t0001.png 이미지

Table. 2 measuring value of top (㎛)

HOJBC0_2019_v23n1_63_t0002.png 이미지

Table. 3 measuring value of bottom (㎛)

HOJBC0_2019_v23n1_63_t0003.png 이미지

Table. 4 measurements and standard deviations of the top and bottom points of the eyeball (mean±standard deviation, ㎛)

HOJBC0_2019_v23n1_63_t0004.png 이미지

Table. 5 height from top to bottom of the eyeball (㎛)

HOJBC0_2019_v23n1_63_t0005.png 이미지

Table. 6 comparison of error according to measuring method

HOJBC0_2019_v23n1_63_t0006.png 이미지

References

  1. K. H. Kook, Y. K. Kim, and S. Y. Lee, "Exophthalmometric values of Korean using Hertel and Naugle exophthalmometers," Opthalmological Society, vol. 44, no. 1, pp. 10-15, 2003.
  2. J. H. Yum, S. K. Choi, J. H. Kim, and D. H. Lee, "Comparison of Aberrations in Korean Normal Eyes Measured With Two Different Aberrometers," Opthalmological Society, vol. 50, no. 12, pp. 1789-1794, 2009.
  3. J. H. Hwang, S. Y. Lee, and S. J. Kim, "Comparison of Reproducibility between Exophthalmometer Readings Measured with Hertel and Naugle Exophthalmometer," Opthalmological Society, vol. 40, no. 2, pp. 293-298, 1999.
  4. E. Nkenke, M. Benz, T. Maier, J. Wiltfang, L. M. Holbach, M. Kramer, G. Hausler, F. W. Neukam, "Relative en- and exophthalmometry in zygomatic fractures comparing optical non-contact, non-ionizing 3D imaging to the Hertel instrument and computed tomography," Journal of Cranio-Maxillofacial Surgery, vol. 31, no. 6, pp. 362-368, 2003. https://doi.org/10.1016/j.jcms.2003.07.001
  5. J. S. Chang, Y. K. Kim, "Exophthalmometric values using White-light Scanning Interferometer," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 12, pp. 2341-2346, Dec. 2017. https://doi.org/10.6109/JKIICE.2017.21.12.2341
  6. S. H. Lee, K. W. Ko, K. C. Ko, S. Y. Cho, "Development of White Light Scanning Interferometry Autofocusing Equipment for LCD part Inspection," Proceedings of the Korean Society of Precision Engineering Conference, pp. 3-4, 2006.
  7. I. B. Chyun, K. N. Joo, "Sub-sampling Technique to Improce the Measurement Speed of White Light Scanning Interferometry," Journal of the Korean Society for Precision Engineering, vol. 31, no. 11, pp. 999-1006, Nov. 2014. https://doi.org/10.7736/KSPE.2014.31.11.999
  8. Y. S. Ghim, A. Davies, and H. G. Rhee, "Accuracy Improvement and Systematic Bias Analysis of Scanning White Light Interferometry for Free-form Surfaces Measurements," Journal of the Korean Society for Precision Engineering, vol. 31, no. 7, pp. 605-613, Jul. 2014. https://doi.org/10.7736/KSPE.2014.31.7.605
  9. Y. M. Goo, K. H. Lee, "Flip Chip Bump 3D Inspection Equipment using White Light Interferometer with Large F.O.V.," Journal of the Korean Institute of Intelligent Systems, vol. 23, no. 4, pp. 286-291, Aug. 2013. https://doi.org/10.5391/JKIIS.2013.23.4.286
  10. K. W. Ko, J. H. Sim, and M. Y. Kim, "A High-Speed White-Light Scanning Interferometer for Bump Inspection of Semiconductor Manufacture," Journal of the Korean Society for Precision Engineering, vol. 30, no. 7, pp. 702-708, Jul. 2013. https://doi.org/10.7736/KSPE.2013.30.7.702
  11. N. Arora, M. Martolia, A. Ashok, "A Comparative study of the Image Registration Process on the Multimodal Medical Images," Asia-pacific Journal of Convergent Research Interchange, HSST, ISSN : 2508-9080, vol. 3, no. 1, pp.1-17, Mar. 2017
  12. A. S. Oh, "LED Lighting Monitoring System Using Bluetooth BLE," Journal of the Korea Institute of Information and Communication Engineering, vol. 21, no. 2, pp. 367-372, Feb. 2017. https://doi.org/10.6109/jkiice.2017.21.2.367
  13. C. S. Moon, "Topographic Anatomic Difference of The Eyelid According to Age in Korean," M. S. dissertation, Department of Medical Sciences, Ajou University, 2002.