DOI QR코드

DOI QR Code

Regional estimation of baseflow index in Korea and analysis of baseflow effects according to urbanization

국내 하천 기저유출지표 산정 및 도시화에 따른 기저유출 영향 분석

  • Kang, Hyeongsik (Department of Water and Land, Korea Environment Institute) ;
  • Hyun, Yun-Jung (Department of Water and Land, Korea Environment Institute) ;
  • Jun, Sang-Mook (Environment Impact Assessment Group, Korea Environment Institute)
  • 강형식 (한국환경정책평가연구원 물국토연구본부) ;
  • 현윤정 (한국환경정책평가연구원 물국토연구본부) ;
  • 전상묵 (한국환경정책평가연구원 환경영향평가본부)
  • Received : 2018.03.22
  • Accepted : 2018.12.11
  • Published : 2019.02.28

Abstract

In this study, the baseflow indices in Nakdong river watershed and the whole country's river were calculated by using SWAT model and PART method. The annual averaged baseflow in the Nakdong river watershed was estimated at 40% - 44% of the total discharge rate, and it is found to be higher than 90% during the winter months of December and January. An analysis of the baseflow index from 317 gauge stations across the country revealed that the contribution of baseflow to the nation's stream flow rate stood at an annual average of 40%, ranging from less than 20% to over 80% by region. Also, the impact of the decreasing baseflow due to land use changes in 1975 and 2000 was analyzed in Keumhogang river watershed under the same weather conditions. The results revealed that the number of days under the standard instream flow increased by 19-24 days as a result of the increase in the urbanization rate.

본 연구에서는 SWAT 모형과 PART 방법을 이용하여 낙동강 유역과 전국 하천을 대상으로 기저유출지표를 산정하고, 도시화에 따른 기저유출 영향을 분석하였다. 낙동강 유역의 연평균 기저유출은 총유량 대비 약 40-44%인 것으로 분석되었으며, 계절별로는 12월과 1월 겨울철에 90%를 상회하는 것으로 나타났다. 또한 전국 317개소 관측 유량에 대해 기저유출을 분석한 결과 기저유출이 전국하천 유량에 기여하는 비율은 연평균 약 40%인 것으로 나타났으며, 지역별로 20% 미만~80% 이상인 것으로 예측되었다. 따라서 기저유출지표가 적은 지역에서는 주변 생태계 보전을 위해 지하수 이용과 개발을 제한하는 것이 타당할 것이다. 한편 금호강 유역을 대상으로 동일 기상조건에서 1975년과 2000년도 토지이용변화에 따른 기저유출 감소가 하천유량에 미치는 영향을 분석하였으며, 그 결과 도시화율 증가에 의해 하천유지유량의 경우 미달일수가 19일~24일 정도 증가하는 것으로 분석되었다.

Keywords

SJOHCI_2019_v52n2_97_f0001.png 이미지

Fig. 1. Comparison of computed and measured flow rates

SJOHCI_2019_v52n2_97_f0002.png 이미지

Fig. 2. Comparison of BFIs by SWAT and PART models

SJOHCI_2019_v52n2_97_f0003.png 이미지

Fig. 3. Monthly baseflow index in nakdong river watershed

SJOHCI_2019_v52n2_97_f0004.png 이미지

Fig. 4. Spatial changes of monthly baseflow index in nakdong river watershed

SJOHCI_2019_v52n2_97_f0005.png 이미지

Fig. 5. Baseflow index distribution in korea river

SJOHCI_2019_v52n2_97_f0006.png 이미지

Fig. 6. Land use change in keumhogang river watershed

Table 1. R2 Coefficient for the simulated discharge by SWAT

SJOHCI_2019_v52n2_97_t0001.png 이미지

Table 2. Land use cange in keumhogang river watershed

SJOHCI_2019_v52n2_97_t0002.png 이미지

Table 3. Comparison of the number of days under the low flow and instream flow in keumhogang river watershed by land use changes in 1975 and 2000

SJOHCI_2019_v52n2_97_t0003.png 이미지

References

  1. Ahiablame, L., Chaubey, I., Engel, B., Cherkauer, K., and Merwade, V. (2013). "Estimation of annual baseflow at ungaged sites in Indiana USA." Journal of Hydrology, Vol. 476, No. 7, pp. 13-27. https://doi.org/10.1016/j.jhydrol.2012.10.002
  2. Anderson, M. G., and Burt, T. P. (1980). "Interpretation of recession flow." Journal of Hydrology, Vol. 46, No. 1-2, pp. 89-101. https://doi.org/10.1016/0022-1694(80)90037-2
  3. Arnold, J. G., and Allen, P. M. (1999). "Automated methods for estimating baseflow and groundwater recharge from streamflow records." Journal of the American Water Resources Association, Vol. 35, No. 2, pp. 411-424. https://doi.org/10.1111/j.1752-1688.1999.tb03599.x
  4. Choi, Y. H., Park, Y. S., Ryu, J. C., Lee, D. J., Kim, Y. S., Choi, J. D., and Lim, K.J. (2014). "Analysis of baseflow contribution to streamflow at several flow stations." Journal of Korean Society on Water Environment, Vol. 30, No. 4, pp. 441-451. [Korean Literature] https://doi.org/10.15681/KSWE.2014.30.4.441
  5. Eckhardt, K. (2008). "A comparison of baseflow indices, which were calculated with seven different baseflow separation methods." Journal of Hydrology, Vol. 352, No. 1-2, pp. 168-173. https://doi.org/10.1016/j.jhydrol.2008.01.005
  6. Gebert, W. A., Radloff, M. J., Considine, E. J., Kennedy, J. L., (2007). "Use of streamflow data to estimate baseflow/ground-water recharge for Wisconsin." Journal of the American Water Resources Association, Vol. 43, No. 1, pp. 220-236. https://doi.org/10.1111/j.1752-1688.2007.00018.x
  7. Han, J. H., Lim, K. J., and Jung, Y. H. (2016). "Study on relationship between streamflow variability and baseflow contribution in Nakdong river basin." Korean Society of Agricultural Engineers, Vol. 58, No. 1, pp. 27-38. [Korean Literature] https://doi.org/10.5389/KSAE.2016.58.1.027
  8. Hong, J., Lim, K. J., Shin, Y., and Jumg, Y. (2015). "Quantifying contribution of direct runoff and baseflow to rivers in Han river, South Korea." Journal of Korea Water Resources Association, Vol. 48, No. 4, pp. 309-319. [Korean Literature] https://doi.org/10.3741/JKWRA.2015.48.4.309
  9. Kim, K. S., and Cho, K. T. (2000). "A study of the estimation of baseflow using baseflow separation in the Daichung dam basin." Journal of the Korean Society of Groundwater Environment, Vol. 7, No. 1, pp. 15-19. [Korean Literature]
  10. Kim, K. H., and Lee, H. S. (2009). "Impacts of nitrate in base flow discharge on surface water quality." Journal of Korea Civil Engineerig Society, Vol. 29, No. 1, pp. 105-109. [Korean Literature]
  11. Korea Environment Institute (2015). Study on the Development and Implementation of Baeflow Index for the Management of Groundwater Dependent Ecosystems. Reearch Paper 2015-12. [Korean Literature]
  12. Korea Environment Institute (2017). Evaluation of Environment Ecological Drought Considering Stream Baseflow. Reearch Paper 2017-14. [Korean Literature]
  13. Kim, Y. J., Jung, W. H., and Kim, K. H. (2017). "Needs for management of baeflow in the vicinity of burial sites." Journal of the Korean Society of Water and Wastewater, Vol. 31, No. 3, pp. 219-228. [Korean Literature] https://doi.org/10.11001/jksww.2017.31.3.219
  14. Kum, D. H., Moon, J. P., Ryu, J, C., Kang, H. W., Jang, W. S., and Lim, K. J. (2011). "Analysis of baseflow at major rivers using web-based SWAT Bflow system." Proceeding of the 2011 conference of Korea Water Resource Association, Korea Water Resource Association, pp. 462-462. [Korean Literature]
  15. Lim, K. J., Engel, BA., Tang, Z., Choi, J., Kim, K., Muthukrishnan, S., and Tripathy, D. (2005). "Automated web GIS-based hydrograph analysis tool, WHAT." Journal of the American Water Recourse Association, Vol .41, No. 6, pp. 1407-1416. [Korean Literature] https://doi.org/10.1111/j.1752-1688.2005.tb03808.x
  16. Lee, S. C., Kim, H. Y., Kim, H. J., Han, J. H., Kim, S. J., Kim, J., and Lim, K. J. (2017). "Analysis of baseflow contribution based on time-scales using various baseflow separation methods." Journal of the Korean Society of Agricultural Engineers, Vol. 59, No. 2, pp. 1-11. [Korean Literature] https://doi.org/10.5389/KSAE.2017.59.2.001
  17. Luo, Y., Arnold, J., Allen, P., and Chen, X. (2012). "Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China." Hydrology and Earth System Sciences, Vol. 16, No. 4, pp. 1259-1267. https://doi.org/10.5194/hess-16-1259-2012
  18. Neff, B. P., Day, S. M., Piggott, A. R., and Fuller, L. M. (2005). Base Flow in the Great Lakes Basin. US Geological Survey Scientific Investigations Report, 2005-5217. USGS, Reston, VA.
  19. Piggott, A. R., Moin, S., and Southam, C. (2005). "A revised approach tothe UKIH method for the calculation of baseflow." Hydrological Sciences Journal, Vol. 50, No. 5, pp. 911-920. https://doi.org/10.1623/hysj.2005.50.5.911
  20. Rutledge, A. T. (1998). Computer programs for describing the recession of groundwater recharge and for estimating mean groundwater recharge and discharge from stream records-Update, U.S. Geological Survey Water Resources Investigations Report, 98-4148, USGS, Reston, VA.
  21. Santhi, C., Allen, P. M., Muttiah, R. S., Arnold, J. G., and Tuppad, P. (2008). "Regional estimation of baseflow for the conterminous United States by hydrologic landscape regions." Journal of Hydrology, Vol. 351, No. 1-2, pp. 139-153. https://doi.org/10.1016/j.jhydrol.2007.12.018
  22. Schilling, K. E., and Libra, R. D. (2003). "Increased baseflow in Iowa over the second half of the 20th century." Journal of the American Water Recourse Association, Vol. 39, No. 4, pp. 851-860. https://doi.org/10.1111/j.1752-1688.2003.tb04410.x
  23. Sloto, R. A., and Crouse, M. Y. (1996). HYSEP: a computer program for stream flow hydrograph separation and analysis. U.S. Geological Survey, Water-Resources Investigation Report 96-4040, Reston, VA.
  24. Yang, J. S., and Ji, D. K. (2010). "Correlation analysis between groundwater level and baseflow in the Geum river watershed, calculated using the WHAT system." The Journal of Engineering Geology, Vol. 21, No. 2, pp. 107-116. [Korean Literature] https://doi.org/10.9720/kseg.2011.21.2.107
  25. Zhang, Y. K., and Schilling, K. E. (2006). "Increasing stream flow and baseflow in the Mississippi River since 1940: effect of land use change." Journal of Hydrology, Vol. 324, No. 1-4, pp. 412-422. https://doi.org/10.1016/j.jhydrol.2005.09.033
  26. Zhu, Y., and Day, R. L. (2009). "Regression modeling of streamflow, baseflow, and runoff using geographic information systems." Journal of Environmental Management, Vol. 90, No. 2, pp. 946-953. https://doi.org/10.1016/j.jenvman.2008.02.011