DOI QR코드

DOI QR Code

Formation and Control of Dual Porous Structures of Metal by an Electrochemical Method

전기화학적 방법을 통한 금속 이중기공구조 형성 및 제어

  • Ha, Seong-Hyeok (School of Materials Science and Engineering, Pusan National University) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
  • Received : 2018.11.02
  • Accepted : 2018.11.30
  • Published : 2019.02.27

Abstract

Dual porous structures are observed for the first time on a metallic Cu surface underneath anodic Cu oxide by the application of an anodizing voltage to Cu in oxalic acid. The as-prepared porous Cu surface contains macropores of less than $1{\mu}m$ diameter and mesopores of about tens of nanometers diameter with circular shapes. The size and density (number of pores/area) of the macropores are dependent on the applied voltage. It is likely that the localized dissolution (corrosion) of Cu in oxalic acid under the anodizing voltages is responsible for the formation of the mesopores, and the combination of a number of the mesopores might create the macropores, especially under a relatively high anodizing voltages or a prolonged anodizing time. The variations of pore structure (especailly macropores) with applied voltage and time are reasonably explained on the basis of the proposed mechanism of pore formation.

Keywords

References

  1. H.-C. Shin and M. Liu, Chem. Mater., 16, 5460 (2004). https://doi.org/10.1021/cm048887b
  2. J. Cabana, J. Monconduit, D. Larcher and M. R. Palacin, Adv. Mater., 22, E170 (2010). https://doi.org/10.1002/adma.201000717
  3. M. Ahmad, J. Zhao, J. Iqbal, W. Miao, L. Xie, R. Mo and J. Zhu, J. Mater. Chem., 21, 7723 (2011). https://doi.org/10.1039/c1jm10720h
  4. D. H. Ha, M. A. Islam and R. D. Robinson, Nano Lett., 12, 5122 (2012). https://doi.org/10.1021/nl3019559
  5. Y. M. Chun and H. C. Shin, Electrochim. Acta, 209, 369 (2016). https://doi.org/10.1016/j.electacta.2016.05.089
  6. J. Vetter, P. Nova'k, M.R. Wagner, C. Veit, K.-C. Moller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler and A. Hammouche, J. Power Sources, 147, 269 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.006
  7. M. Wachtler, M. Winter and J. O. Besenhard, J. Power Sources, 105, 151 (2002). https://doi.org/10.1016/S0378-7753(01)00934-X
  8. H.-C. Shin, J. Dong and M. Liu, Adv. Mater., 15, 1610 (2003). https://doi.org/10.1002/adma.200305160
  9. K.-L. Lee, J.-Y. Jung, S.-W. Lee, H.-S. Moon and J.-W. Park, J. Power Sources, 129, 270 (2004). https://doi.org/10.1016/j.jpowsour.2003.10.013
  10. R. H. Kim, D. W. Han, D. H. Nam, J. H. Kim and H. S. Kwon, J. Electrochem. Soc., 157, D269 (2010). https://doi.org/10.1149/1.3356974
  11. Y. H. Rho, K. Kanamura, M. Fujisaki, J.-I. Hamagami, S.-I. Suda and T. Umegaki, Solid State Ionics, 151, 151 (2002). https://doi.org/10.1016/S0167-2738(02)00594-5
  12. H. Duan, J. Gnanaraj, X. Chen, B. Li and J. Liang, J. Power Sources, 185, 512 (2008). https://doi.org/10.1016/j.jpowsour.2008.06.078
  13. P. L. Taberna, S. Mitra, P. Poizot, P. Simon and J. M. Tarascon, Nat. Mater., 5, 567 (2006). https://doi.org/10.1038/nmat1672
  14. M. H. Ryou, Y. M. Lee, Y. Lee, M. Winter and P. Bieker, Adv. Funct. Mater., 25, 834 (2015). https://doi.org/10.1002/adfm.201402953
  15. J. L. Ord and D. J. DeSmet, J. Electrochem. Soc., 123, 1876 (1976). https://doi.org/10.1149/1.2132715
  16. X. Zhou, G. E. Thompson, H. Habazaki, K. Shimizu, P. Skeldon and G. C. Wood, Thin Solid Films, 293, 327 (1997). https://doi.org/10.1016/S0040-6090(96)09117-1
  17. S. Rudenja, J. Pan, I. Odnevall, C. Leygraf, P. Kulu, J. Electrochem. Soc., 146(11), 4082, (1999) https://doi.org/10.1149/1.1392595
  18. J. P. O'sullivan, and G. C. Wood, Proc. R. Soc. Lond. A, 317, 511 (1970). https://doi.org/10.1098/rspa.1970.0129
  19. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen and E. C. Dickey, J. Mater. Res., 16, 3331 (2001). https://doi.org/10.1557/JMR.2001.0457
  20. J.-W. Lee, S.-J. Park, W.-S. Choi, H.-C. Shin, Electrochim. Acta, 56, 5919 (2011). https://doi.org/10.1016/j.electacta.2011.03.144
  21. G. E. Thompson, Thin Solid Films, 297, 192 (1997). https://doi.org/10.1016/S0040-6090(96)09440-0
  22. K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn and U. Gosele, Nano Lett., 2, 677 (2002). https://doi.org/10.1021/nl025537k
  23. S. H. Park, H. S. Shin, Y. H. Kim, H. M. Park and J. Y. Song, J. Alloys Compd., 580, 152 (2013). https://doi.org/10.1016/j.jallcom.2013.05.130