DOI QR코드

DOI QR Code

Diameter-Controllable Synthesis and Enhanced Photocatalytic Activity of Electrospun ZnO Nanofibers

전기방사를 이용하여 제조된 산화아연 나노섬유의 직경제어 및 광촉매 특성

  • Ji, Myeong-Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Yoo, Jaehyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 지명준 (서울과학기술대학교 신소재공학과) ;
  • 유재현 (서울과학기술대학교 신소재공학과) ;
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Received : 2018.11.07
  • Accepted : 2018.12.15
  • Published : 2019.02.27

Abstract

A heterogeneous photocatalytic system is attracting much interest for water and air purification because of its reusability and economical advantage. Electrospun nanofibers are also receiving immense attention for efficient photocatalysts due to their ultra-high specific surface areas and aspect ratios. In this study, ZnO nanofibers with average diameters of 71, 151 and 168 nm are successfully synthesized by facile electrospinning and a subsequent calcination process at $500^{\circ}C$ for 3 h. Their crystal structures, morphology features and optical properties are systematically characterized by X-ray diffraction, scanning electron microscopy, UV-Vis and photoluminescence spectroscopies. The photocatalytic activities of the ZnO nanofibers are evaluated by the photodegradation of a rhodamine B aqueous solution. The results reveal that the diameter of the nanofiber, controlled by changing the polymer content in the precursor solution, plays an important role in the photocatalytic activities of the synthesized ZnO nanofibers.

Keywords

References

  1. M. N. Chong, B. Jin, C. W.K. Chow and C. Saint, Water Res., 44, 2997 (2010). https://doi.org/10.1016/j.watres.2010.02.039
  2. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho and H. Morkoc, J. Appl. Phys., 98, 041301 (2005). https://doi.org/10.1063/1.1992666
  3. R. Georgekutty, M. K. Seery and S. C. Pillai, J. Phys. Chem. C, 112, 13563 (2008). https://doi.org/10.1021/jp802729a
  4. S. B. Khan, M. Faisal, M. M. Rahman and A. Jamal, Talanta, 85, 943 (2011). https://doi.org/10.1016/j.talanta.2011.05.003
  5. L. Fu and Z. Fu, Ceram. Int., 41, 2492 (2015). https://doi.org/10.1016/j.ceramint.2014.10.069
  6. T.-J. Kuo, C.-N. Lin, C.-L. Kuo and M. H. Huang, Chem. Mater., 19, 5143 (2007). https://doi.org/10.1021/cm071568a
  7. F. Lu, W. Cai and Y. Zhang, Adv. Funct. Mater., 18, 1047 (2008). https://doi.org/10.1002/adfm.200700973
  8. O. Akhavan, ACS Nano, 4, 4174 (2010). https://doi.org/10.1021/nn1007429
  9. X. Ge, K. Hong, J. Zhang, L. Liu and M. Xu, Mater. Lett., 139, 119 (2015). https://doi.org/10.1016/j.matlet.2014.10.058
  10. D. Lin, H. Wu, R. Zhang and W. Pan, Chem. Mater., 21, 3479 (2009). https://doi.org/10.1021/cm900225p
  11. P. Singh, K. Mondal and A. Sharma, J. Colloid Interface Sci., 394, 208 (2013). https://doi.org/10.1016/j.jcis.2012.12.006
  12. S. An, B. N. Joshi, M. W. Lee, N. Y. Kim and S. S. Yoon, Appl. Surf. Sci., 294, 24 (2014). https://doi.org/10.1016/j.apsusc.2013.12.159
  13. K. V. Kumar, K. Porkodi and F. Rocha, Catal. Commun., 9, 82 (2008). https://doi.org/10.1016/j.catcom.2007.05.019
  14. H. Li, W. Zhang, B. Li and W. Pan, J. Am. Ceram. Soc., 93, 2503 (2010). https://doi.org/10.1111/j.1551-2916.2010.03841.x