DOI QR코드

DOI QR Code

Electrochemical Analysis of CuxCo3-xO4 Catalyst for Oxygen Evolution Reaction Prepared by Sol-Gel Method

Sol-Gel법을 이용한 CuxCo3-xO4 산소 발생 촉매의 합성 및 전기화학 특성 분석

  • Park, Yoo Sei (School of Materials Science and Engineering, Pusan National University) ;
  • Jung, Changwook (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Chiho (School of Materials Science and Engineering, Pusan National University) ;
  • Koo, Taewoo (School of Materials Science and Engineering, Pusan National University) ;
  • Seok, Changgyu (School of Materials Science and Engineering, Pusan National University) ;
  • Kwon, Ilyeong (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Yangdo (School of Materials Science and Engineering, Pusan National University)
  • 박유세 (부산대학교 공과대학 재료공학과) ;
  • 정창욱 (부산대학교 공과대학 재료공학과) ;
  • 김치호 (부산대학교 공과대학 재료공학과) ;
  • 구태우 (부산대학교 공과대학 재료공학과) ;
  • 석창규 (부산대학교 공과대학 재료공학과) ;
  • 권일영 (부산대학교 공과대학 재료공학과) ;
  • 김양도 (부산대학교 공과대학 재료공학과)
  • Received : 2018.11.30
  • Accepted : 2018.12.21
  • Published : 2019.02.27

Abstract

Transition metal oxide is widely used as a water electrolysis catalyst to substitute for a noble metal catalyst such as $IrO_2$ and $RuO_2$. In this study, the sol-gel method is used to synthesize the $Cu_xCo_{3-x}O_4$ catalyst for the oxygen evolution reaction (OER),. The CuxCo3-xO4 is synthesized at various calcination temperatures from $250^{\circ}C$ to $400^{\circ}C$ for 4 h. The $Cu_xCo_{3-x}O_4$ synthesized at $300^{\circ}C$ has a perfect spinel structure without residues of the precursor and secondary phases, such as CuO. The particle size of $Cu_xCo_{3-x}O_4$ increases with an increase in calcination temperature. Amongst all the samples studied, $Cu_xCo_{3-x}O_4$, which is synthesized at 300?, has the highest activity for the OER. Its onset potential for the OER is 370 mV and the overpotential at $10mA/cm^2$ is 438 mV. The tafel slope of $Cu_xCo_{3-x}O_4$ synthesized at $300^{\circ}C$ has a low value of 58 mV/dec. These results are mainly explained by the increase in the available active surface area of the $Cu_xCo_{3-x}O_4$ catalyst.

Keywords

References

  1. M. K. Datta, K. Kadakia, O. I. Velikokhatnyi, P. H. Jampani, S. J. Chung, J. A. Poston and A. Manivannan, J. Mater. Chem. A, 1, 4026 (2013). https://doi.org/10.1039/c3ta01458d
  2. W. Xu and K. Scott, J. Mater. Chem., 21, 12344 (2011). https://doi.org/10.1039/c1jm11312g
  3. M. Carmo, D. L. Fritz, J. Mergel and D. Stolten, Int. J. Hydrogen Energy, 38, 4091 (2013).
  4. C. Bocca, A. Barbucci, M. Delucchi and G. Cerisola, Int. J. Hydrogen Energy, 24, 21 (1999). https://doi.org/10.1016/S0360-3199(98)00012-3
  5. X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen and S. Yang, Angew. Chem., 126, 7714 (2014). https://doi.org/10.1002/ange.201402822
  6. W. S. Choi, M. J. Jang, Y. S. Park, K. H. Lee, J. Y. Lee, M. H. Seo and S. M. Choi, ACS Appl. Mater. Interfaces, 10, 38663 (2018). https://doi.org/10.1021/acsami.8b12478
  7. T.-Y. Wei, C.-H. Chen, H.-C. Chisen, S.-Y. Lu and C.- H. Hu, Adv. Mater., 22, 347 (2010). https://doi.org/10.1002/adma.200902175
  8. M. Hamdani, R. N. Singh and P. Chartier, Int. J. Electrochem. Sci., 5, 556 (2010).
  9. I. Nikolov, R. Darkaoui, E. Zhecheva, R. Stoyanova, N. Dimitrov and T. Vitanov, J. Electroanal. Chem., 429, 157 (1997). https://doi.org/10.1016/S0022-0728(96)05013-9
  10. M. D. Koninck, S. C. Poirier and B. Marsan, J. Electrochem. Soc., 154, A381 (2007). https://doi.org/10.1149/1.2454366
  11. T. W. Koo, C. S. Park and Y. D. Kim, J. Korean Phys. Soc., 67, 1558 (2015). https://doi.org/10.3938/jkps.67.1558
  12. Y. S. Park, C. S. Park, C. H. Kim and Y. D. Kim, J. Korean Phys. Soc., 69, 1187 (2016). https://doi.org/10.3938/jkps.69.1187
  13. G. B. Barbi, J. P. Santos, P. Serrini, P. N. Gibson, M. C. Horrillo and L. Manes, Sens. Actuators, B, 25, 559 (1995). https://doi.org/10.1016/0925-4005(95)85122-4
  14. B. Lal, N. K. Singh, S. Samuel and R. N. Singh, J. New Mater. Electrochem. Syst., 2, 59 (1999).
  15. Q. Zhang, Z. D. Wei, C. Liu, X. Liu, X. Q. Qi, S. G. Chen, W. Ding, Y. Ma, F. Shi and Y. M. Zhou, Int. J. Hydrogen Energy, 37, 822 (2012). https://doi.org/10.1016/j.ijhydene.2011.04.051
  16. A. Marshall, B. Boresen, G. Hagen, M. Tsypkin and R. Tunold, Mater. Chem. Phys., 94, 226 (2005). https://doi.org/10.1016/j.matchemphys.2005.04.039
  17. M. De Koninck, S. C. Poirier and B. Marsan, J. Electrochem. Soc., 153, A2103 (2006). https://doi.org/10.1149/1.2338631
  18. T. A. F Lassali, J. F. C Boodts and L. O. S. Bulhoes, J. Non-Cryst. Solids, 273, 129 (2000). https://doi.org/10.1016/S0022-3093(00)00152-6
  19. Y. C. Liu, J. A. Koza and J. A. Switzer, Electrochimica Acta, 140, 359 (2014). https://doi.org/10.1016/j.electacta.2014.04.036
  20. T. Reier, M. Oezaslan and P. Strasser, ACS Catal., 2, 1765 (2012). https://doi.org/10.1021/cs3003098
  21. E. Locke, S. Jiang and S. Beaumont, Top. Catal., 61, 977 (2018). https://doi.org/10.1007/s11244-018-0923-4