DOI QR코드

DOI QR Code

High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes

독립형 반고체 복합 전해질을 적용한 고온 수퍼커패시터

  • Kim, Dong Won (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Jung, Hyunyoung (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
  • 김동원 (국립경남과학기술대학교 에너지공학과) ;
  • 정현영 (국립경남과학기술대학교 에너지공학과)
  • Received : 2018.11.16
  • Accepted : 2019.01.21
  • Published : 2019.02.27

Abstract

Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At $175^{\circ}C$, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.

Keywords

References

  1. P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008). https://doi.org/10.1038/nmat2297
  2. L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 38, 2520 (2009). https://doi.org/10.1039/b813846j
  3. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. van Schalkwijk, Nat. Mater., 4, 366 (2005). https://doi.org/10.1038/nmat1368
  4. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
  5. L. Wei and G. Yushin, Nano Energy, 1, 552 (2012). https://doi.org/10.1016/j.nanoen.2012.05.002
  6. R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang and Y. Lei, Nano Energy, 8, 231 (2014). https://doi.org/10.1016/j.nanoen.2014.06.015
  7. J. R. Miller and P. Simon, Science, 321, 651 (2008). https://doi.org/10.1126/science.1158736
  8. R. S. Borges, A. M. Reddy, M.-T. Rodrigues, H. Gullapalli, K. Balakrishnam, G. G. Silva and P. M. Ajayan, Sci. Rep., 3, 2572 (2013). https://doi.org/10.1038/srep02572
  9. T. Hibino, K. Kobayashi, M. Nagao and S. Kawasaki, Sci. Rep., 5, 7903 (2014). https://doi.org/10.1038/srep07903
  10. X. Liu, Z. Wen, D. Wu, H. Wang, J. Yang and Q. Wang, J. Mater. Chem. A, 2, 11569 (2014). https://doi.org/10.1039/C4TA01944J
  11. R. Lin, P.-L. Tabernat, S. Fantin, V. Presser, C. R. Perez, F. Malbosc, N. L. Rupesinghe, K. B. Teo, Y. Gogotsi and P. Simon, J. Phys. Chem. Lett., 2, 2396 (2011). https://doi.org/10.1021/jz201065t
  12. S. Ahmad, M,. Deepa and S. A. Agnihotry, Sol. Energy Mater. Sol. Cells, 92, 184 (2008). https://doi.org/10.1016/j.solmat.2007.03.036
  13. Z. Ueno, A. Inaba, M. Kondoh and M. Watanabe, Langmuir, 24, 5253, (2008). https://doi.org/10.1021/la704066v
  14. Product information sheet on the fumed silica. The Sigmaaldrich on the Web. Retrieved December 1, 2005 from http://www.sigmaaldrich.com
  15. P. L. Taberna, P. Simon and J. F. Fauvarque, J. Electrochem. Soc., 150, A292 (2003). https://doi.org/10.1149/1.1543948
  16. Y. Liao, M. Rao, W. Li, C. Tan, J. Yi and L. Chen, Electrochimica Acta, 54, 6396 (2009). https://doi.org/10.1016/j.electacta.2009.05.081
  17. B. Shen, J. Lang, R. Guo, X. Zhang and X. Yan, ACS Appl. Mater. Interfaces, 7, 25378 (2015). https://doi.org/10.1021/acsami.5b07909
  18. Y. Fu, X. Ma, Q. Yang and X. Zong, Mater. Lett., 57, 1759 (2003). https://doi.org/10.1016/S0167-577X(02)01065-0
  19. C. Lu, T. Hoang, T. Doan, H. Zhao, R. Pan, L. Yang, W. Guan and P. Chen, Applied Energy, 170, 58 (2016). https://doi.org/10.1016/j.apenergy.2016.02.117
  20. H.Y. Jung, M.B. Karimi, M.G. Hahm, P. M. Ajayan and Y.J. Jung, Sci. Rep., 2, 773, (2012). https://doi.org/10.1038/srep00773
  21. S.M. Jung, D.L. Mafra, C.-T. Lin, H.Y. Jung and J. Kong, Nanoscale, 7, 4386 (2015). https://doi.org/10.1039/C4NR07564A