DOI QR코드

DOI QR Code

조선소 블록 정도관리를 위한 경량화 측정 장비 및 증강현실 기반의 스마트 정도관리 시스템 개발

A Study on Smart Accuracy Control System based on Augmented Reality and Portable Measurement Device for Shipbuilding

  • 남병욱 (인하대학교 조선해양공학과) ;
  • 이경호 (인하대학교 조선해양공학과) ;
  • 이원혁 (인하대학교 조선해양공학과) ;
  • 이재덕 ((주)강남 조선사업부) ;
  • 황호진 (선박해양플랜트연구소 해양안전환경연구본부)
  • Nam, Byeong-Wook (Naval Architecture and Ocean Engineering, Inha Univ.) ;
  • Lee, Kyung-Ho (Naval Architecture and Ocean Engineering, Inha Univ.) ;
  • Lee, Won-Hyuk (Naval Architecture and Ocean Engineering, Inha Univ.) ;
  • Lee, Jae-Duck (Dept. Shipbuilding, Kangnam Corp.) ;
  • Hwang, Ho-Jin (Maritime Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering)
  • 투고 : 2018.11.19
  • 심사 : 2018.12.03
  • 발행 : 2019.02.28

초록

선박의 생산 효율을 높이고 생산 주기를 단축하기 위해서는 건조 주기 동안에 효율적으로 선박 구성 요소의 정확도를 평가하는 것이 중요하다. 블록의 정도 관리는 선박 공정의 단축 및 비용 절감, 선박 품질 향상에 중요한 의미를 갖는다. 대형 조선소를 중심으로 이를 위한 시스템들이 개발되어 활용되고 있지만 일부 조선소에서는 블록 형상이나 크기에 따라 줄자나 추 등의 전통적인 측정도구나 광학 장비인 광파기를 사용하여 측정, 관리하고 있으며, 정도 관리 수행하는데 있어서 이러한 도구나 장비뿐만 아니라 필수적으로 측정 위치를 파악하기 위한 종이 도면과 측정 데이터를 기록하기 위한 장치를 병행하고 있다. 측정된 결과는 수기 입력 혹은 기록 장치를 통해 정도 관리 시스템에서 관리하게 된다. 측정 결과는 작업 환경 및 작업자의 숙련도에 따라 영향이 미치게 되며, 측정 결과 관리 측면에서도 측정 결과 작성 누락, 정도관리 시트 관리의 부재 등에 대한 인적 오류(human error)와 시스템 내 결과 데이터 입력으로 인한 이중 작업 시간 소요로 인한 효율 측면에서의 비용 손실이 발생한다. 본 연구에서는 기존 정도관리 수행에서의 작업 환경을 개선하기 위한 목적으로 블록 정도 및 블록 측정 위치를 종이 도면을 통해서 확인하던 과정을 증강현실 기술을 이용하여 실제 블록 위에 측정 정보를 가시화함으로써 정도관리 수행 시간을 단축하고 측정 장비와의 연동을 통해 정도관리 데이터를 효과적으로 관리할 수 있는 증강현실 기반의 스마트 정도관리 시스템을 제안하고, 제안한 시스템에 대해서 프로토타입 구현을 통하여 정도 관리에서의 적용 가능성을 검토하였다.

In order to increase the production efficiency of the ship and shorten the production cycle, it is important to evaluate the accuracy of the ship components efficiently during the drying cycle. The accuracy control of the block is important for shortening the ship process, reducing the cost, and improving the accuracy of the ship. Some systems have been developed and used mainly in large shipyards, but in some cases, they are measured and managed using conventional measuring instruments such as tape measure and beam, optical instruments as optical equipment, In order to perform accuracy control, these tools and equipment as well as equipment for recording measurement data and paper drawings for measuring the measurement position are inevitably combined. The measured results are managed by the accuracy control system through manual input or recording device. In this case, the measurement result is influenced by the work environment and the skill level of the worker. Also, in the measurement result management side, there are a human error about the lack of the measurement result creation, the lack of the management sheet management, And costs are lost in terms of efficiency due to consumption. The purpose of this study is to improve the working environment in the existing accuracy management process by using the augmented reality technology to visualize the measurement information on the actual block and to obtain the measurement information And a smart management system based on augmented reality that can effectively manage the accuracy management data through interworking with measurement equipment. We confirmed the applicability of the proposed system to the accuracy control through the prototype implementation.

키워드

참고문헌

  1. Housel, T.J., Mun, J., Ford, D.N., Hom, S. (2015) Benchmarking Naval Shipbuilding with 3D Laser Scanning, Additive Manufacturing, and Collaborative Product Lifecycle Management, Acquisition Research Program Sponsored Report Series, Naval Postgraduate School.
  2. Johnson, G.W., Laskey, S.E., Robson, S., Shortis, M.R. (2004) Dimensional & Accuracy Control Automation in Shipbuilding Fabrication: An Integration of Advanced Image Interpretation, Analysis, and Visualization Techniques, International Society for Photogrammetry and Remote Sensing 2004 Congress XX, Turkey.
  3. Ku, B.J. (2016) Study on Applicability of Quality Control using Laser Distance Measurement Devices for Small and Medium Shipyard, Master's Thesis, Inha University.
  4. Ku, B.J., Lee, K.H., Park, K.M., Nam, B.W. (2015) A Study on the Portable Laser Range Finder for Three-Dimensional Localization, Proceedings of the Society of CAD/CAM Engineers Conference, Republic of Korea, 4-6 February 2015.
  5. Kwon, K.Y. (2017) A Study on the Applications of Measurement Systems for Dimensional Quality Management in Shipbuilding, Korean J. Comput. Des. & Eng., 22(3), pp.317-328. https://doi.org/10.7315/CDE.2017.317
  6. Kwon, K.Y. (2017) Shipbuilding Quality Management Trend Analysis, Rev. Comput. Des. & Eng., 23(1), pp.15-21.
  7. Lee, D.K., Seo, K.C., Oh, D.K. (2016) A Study on the Production Management Technology of Medium-sized Ship using a Handheld 3D Scanner, Korean Society for Precision Engineering 2016 Autumn Conference, Korea, 26-28 October 2016.
  8. Lee, H.C., Lee, D.M. (2012) A Study on Pattern Matching Algorithm of 3D Coordinates for Quality Control in Ship Blocks, J. Korea Inf. & Commun. Soc., 37(10), pp.933-939.
  9. Li, R., Lee, K.H., Lee, J.M., Nam, B.W., Kim, D.S. (2016) A Study on Matching Method of Hull Blocks Based on Point Clouds for Error Prediction, J. Comput. Struct. Eng. Inst. Korea, 29(2), pp.123-130. https://doi.org/10.7734/COSEIK.2016.29.2.123
  10. Pack, B.R., Kim, H.C. (2018) Development of Cell Guide Quality Management System for Container Ships, J. Ocean Eng. & Technol., 32(3), pp.158-165. https://doi.org/10.26748/KSOE.2018.6.32.3.158
  11. Son, S.H., Ahn, D.H., Wang, C., Shin, J.G., Ryu, C.H. (2015) A Study on Building Shipyard Quality Control System based on Low Altitude Unmanned Aerial Vehicle, Korean Society for Precision Engineering 2015 Autumn Conference, Republic of Korea, 16-18 December 2015.
  12. Takechi, S., Aoyama, K., Nomoto, T. (1998) Basic Studies on Accuracy Management Systems based on Estimating Welding Deformations, J. Marine Sci. & Technol., 3(4), pp.194-200. https://doi.org/10.1007/BF02492934
  13. Takechi, S., Aoyama, K., Nomoto, T. (2002) Studies on the Block Positioning Metrics System for the Hull Erection Stage, J. Marine Sci. & Technol., 6(3), pp.158-167. https://doi.org/10.1007/s007730200004