Korean J. Math. **27** (2019), No. 1, pp. 131–140 https://doi.org/10.11568/kjm.2019.27.1.131

PSEUDO-METRIC ON KU-ALGEBRAS

ALI N.A. KOAM, AZEEM HAIDER, AND MOIN A. ANSARI^{*}

ABSTRACT. In this paper we have introduced the concept of pseudometric which we induced from a pseudo-valuation on KU-algebras and investigated the relationship between pseudo-valuations and ideals of KU-algebras. Conditions for a real-valued function to be a pseudovaluation on KU-algebras are provided.

1. Introduction

Pseudo-metric induce by pseudo-valuations on Hilbert algebras was initially introduced by Busnęag [2]. Further Busnęag [3] proved many results on extensions of pseudo-valuations. Pseudo-valuations in residuated lattices was introduced by Busnęag [4] where many theorems based on pseudo-valuations in lattice terms and their extension for residuated lattices to pseudo-valuation from valuations has been shown using the model of Hilbert algebras [3].

Logical algebras have become the keen interest for researchers in recent years and intensively studied under the influence of different mathematical concepts. Doh and Kang [5] introduced the concept of pseudovaluation on BCK/BCI algebras and studied results based on them. Ghorbani [6] defined congruence relations and gave quotient structure

Received November 8, 2018. Revised February 19, 2019. Accepted February 24, 2019.

²⁰¹⁰ Mathematics Subject Classification: 03G25, 03C05.

Key words and phrases: KU-algebra, KU-ideal, pseudo-valuations, pseudo-metric. * Corresponding author.

[©] The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

of BCI-algebras based on pseudo-valuation. Zhan and Jun [12] studied pseudo valuation on R_0 -algebras. Based on the concept of pseudovaluation in R_0 -algebras, Yang and Xin [10] characterized pseudo prevaluations on EQ-algebras.

KU-algebras were introduced by Prabpayak and Leerawat [8] in 2009. Further Prabpayak and Leerawat [9] studied homomorphisms and related properties with KU-algebras. Naveed et. al [11] introduced the concept of cubic KU-ideals of KU-algebras. Recently Ansari and Koam [1] gave the concept of roughness in KU-Algebras.

We define a pseudo-valuations on KU-algebras using the model of Busneag and introduce a pseudo-metric on KU-algebras. We also prove that the binary operation defined on KU-algebras is uniformly continuous under the induced pseudo-metric.

2. Preliminaries

In this section, we shall consider concepts based on KU-algebras, KUideals and other important terminologies with examples and some related results.

DEFINITION 1. [8] By a KU-algebra we mean an algebra $(X, \circ, 1)$ of type (2, 0) with a single binary operation \circ that satisfies the following identities: for any $x, y, z \in X$,

 $\begin{array}{l} (\mathrm{ku1}) \ (x \circ y) \circ [(y \circ z) \circ (x \circ z)] = 1, \\ (\mathrm{ku2}) \ x \circ 1 = 1, \\ (\mathrm{ku3}) \ 1 \circ x = x, \\ (\mathrm{ku4}) \ x \circ y = y \circ x = 1 \text{ implies } x = y. \end{array}$

In what follows, let $(X, \circ, 1)$ denote a KU-algebra unless otherwise specified. For brevity we also call X a KU-algebra. In X we can define a binary relation \leq by : $x \leq y$ if and only if $x \circ y = 1$.

LEMMA 1. [8] $(X, \circ, 1)$ is a KU-algebra if and only if it satisfies: (ku5) $x \circ y \leq (y \circ z) \circ (x \circ z)$, (ku6) $x \leq 1$, (ku7) $x \leq y, y \leq x$ implies x = y, LEMMA 2. In a KU-algebra, the following identities are true [7]:

(1) $z \circ z = 1$, (2) $z \circ (x \circ z) = 1$,

- (3) $x \leq y$ imply $y \circ z \leq x \circ z$,
- (4) $z \circ (y \circ x) = y \circ (z \circ x),$
- (5) $y \circ [(y \circ x) \circ x] = 1$, for all $x, y, z \in X$,

EXAMPLE 1. [7] Let $X = \{1, 2, 3, 4, 5\}$ in which \circ is defined by the following table

0	1	2	3	4	5
1	1	2	3	4	5
2	1	1	3	4	5
3	1	2	1	4	4
4	1	1	3	1	3
5	1	1	1	1	1

It is easy to see that X is a KU-algebra.

DEFINITION 2. [8] A non-empty subset A of a KU-algebra X is called a KU-ideal of X if it satisfies the following conditions:

- $(1) \quad 1 \in A,$
- (2) $x \circ (y \circ z) \in A, y \in A$ imply $x \circ z \in A$, for all $x, y, z \in X$.

EXAMPLE 2. [1] Let $X = \{1, 2, 3, 4, 5, 6\}$ in which \circ is defined by the following table:

0	1	2	3	4	5	6
1	1	2	3	4	5	6
2	1	1	3	3	5	6
3	1	1	1	2	5	6
4	1	1	1	1	5	6
$\overline{5}$	1	1	1	2	1	6
6	1	1	2	1	1	1

Clearly $(X, \circ, 1)$ is a KU-algebra. It is easy to show that $A = \{1, 2\}$ and $B = \{1, 2, 3, 4, 5\}$ are KU-ideals of X.

3. Pseudo-valuations on KU-algebras

DEFINITION 3. A real-valued function ζ on a KU-algebra X is called a pseudo-valuation on X if it satisfies the following two conditions:

(1) $\zeta(1) = 0$

(2) $\zeta(x \circ z) \leq \zeta(x \circ (y \circ z)) + \zeta(y) \ \forall x, y, z \in X$

A pseudo-valuation ζ on a KU-algebra X satisfying the following condition:

 $\zeta(x) = 0 \Rightarrow x = 1 \ \forall x \in X \text{ is called a valuation on } X.$

EXAMPLE 3. Let $X = \{1, 2, 3, 4\}$ be a set with operation \circ . A table for such X is defined by following table

0	1	2	3	4
1	1	2	3	4
2	1	1	3	4
3	1	1	1	1
4	1	2	3	1

Here X is a KU-algebra. We find that a real valued function defined on X by

 $\zeta(1) = 0, \, \zeta(2) = 1, \, \zeta(3) = \zeta(4) = 3$, is a pseudo-valuation on X.

PROPOSITION 1. Let ζ be a pseudo-valuation on a KU-algebra X. Then we have

 $(1) x \leq y \Rightarrow \zeta(y) \leq \zeta(x).$ $(2) \zeta(x \circ y) \leq \zeta(y) \ \forall x, y \in X.$ $(3) \zeta((x \circ (y \circ z)) \circ z) \leq \zeta(x) + \zeta(y) \ \forall x, y, z \in X.$

Proof. (1) Let $x, y \in X$ be such that $x \leq y$. Now choosing x = 1, y = x, z = y, in Definition 3(1), (2) and using (ku3) we get

 $\zeta(y) = \zeta(1 \circ y) \le \zeta(1 \circ (x \circ y)) + \zeta(x) = \zeta(1 \circ 1) + \zeta(x) = \zeta(1) + \zeta(x) = \zeta(x).$

(2) If we choose z = y in Definition 3(2), then we get $\zeta(x \circ y) \leq \zeta(x \circ (y \circ y)) + \zeta(y) = \zeta(x \circ 1) + \zeta(y) = \zeta(1) + \zeta(y) = \zeta(y) \ \forall x, y \in X.$

(3) If we choose $x = x \circ (y \circ z)$ in Definition 3(2) then we get

(3.1) $\zeta((x \circ (y \circ z)) \circ z) \le \zeta((x \circ (y \circ z)) \circ (y \circ z)) + \zeta(y)$

Now using the relation \leq and Lemma 2 (5), we get $x \leq (x \circ (y \circ z)) \circ (y \circ z)$. By Proposition 1, it follows that $\zeta((x \circ (y \circ z)) \circ (y \circ z)) \leq \zeta(x)$ using this relation in Equation 3.1, we get $\zeta((x \circ (y \circ z)) \circ z) \leq \zeta(x) + \zeta(y) \ \forall x, y, z \in X$.

COROLLARY 1. Every pseudo-valuation ζ on a KU-algebra X satisfies the following inequality $\zeta(x) \geq 0 \ \forall x \in X$.

PROPOSITION 2. If ζ is a pseudo-valuation on a KU-algebra X, then we have

 $\zeta((x \circ y) \circ y) \le \zeta(x) \ \forall x, y \in X.$

Proof. Choosing y = 1 and z = y in Proposition 1, using (ku3) and Definition 3(1) we get that

 $\zeta((x \circ y) \circ y) = \zeta((x \circ (1 \circ y)) \circ y) \le \zeta(x) + \zeta(1) = \zeta(x) \; \forall x, y \in X. \quad \Box$

The following theorem provides conditions for a real valued function on a KU-algebra X to be a pseudo-valuation on X.

THEOREM 1. Let ζ be a real valued function on a KU-algebra X satisfying the following conditions.

(1) If $\zeta(a) \leq \zeta(x) \ \forall x \in X$, then $\zeta(a) = 1$. (2) $\zeta(x \circ y) \leq \zeta(y) \ \forall x, y \in X$. (3) $\zeta((x \circ (y \circ z)) \circ z) \leq \zeta(x) + \zeta(y)$. Then ζ is a pseudo-valuation on X

Proof. From Lemma 2 (1) and given condition (2), we have $\zeta(1) = \zeta(x \circ x) \leq \zeta(x) \ \forall x \in X$ and hence $\zeta(1) = 0$, using given condition (1). Now, from (ku3), Lemma 2 (1) and given condition (3), we get $\zeta(y) = \zeta(1 \circ y) = \zeta(((x \circ y) \circ (x \circ y)) \circ y) \leq \zeta(x \circ y) + \zeta(x) \ \forall x, y \in X$. It follows from Lemma 2 (4) that $\zeta(x \circ z) \leq \zeta(y \circ (x \circ z)) + \zeta(y) = \zeta(x \circ (y \circ z)) + \zeta(y) \ \forall x, y, z \in X$. Therefore ζ is a pseudo-valuation on X.

COROLLARY 2. Let ζ be a real-valued function on a KU-algebra X satisfying the following conditions:

(1) $\zeta(1) = 0$

(2) $\zeta(x \circ y) \leq \zeta(y), \forall x, y \in X$).

(3) $\zeta((x \circ (y \circ z) \circ z) \leq \zeta(x) + \zeta(y)), \forall x, y, z \in X.$ Then ζ is a pseudo-valuation on X.

THEOREM 2. If ζ is a pseudo-valuation on a KU-algebra X, then $\zeta(y) \leq \zeta(x \circ y) + \zeta(x)$, $\forall x, y \in X$.

Proof. Let $m = (x \circ y) \circ y$ for any $x, y \in X$, and $n = x \circ y$.

Then $y = 1 \circ y = (((x \circ y) \circ y) \circ ((x \circ y) \circ y)) \circ y = (m \circ (n \circ y)) \circ y$. It follows from Theorem 2, Propositions 1 and Propositions 2 that $\zeta(y) = \zeta((m \circ (n \circ y)) \circ y) \leq \zeta(m) + \zeta(n) = \zeta((x \circ y) \circ y) + \zeta(x \circ y) \leq \zeta(x) + \zeta(x \circ y)$. This completes the proof.

THEOREM 3. Let ζ be a real-valued function on a KU-algebra X satisfying the following conditions.

(1) $\zeta(1) = 0$

(2) $\zeta(y) \leq \zeta(x \circ y) + \zeta(x), \forall x, y \in X.$ Then ζ is a pseudo-valuation on X. *Proof.* By Lemma 2 (4), Lemma 2 (5) and given condition (2), we have

 $\zeta[(b \circ (a \circ x) \circ x)] \le \zeta[b \circ ((b \circ (a \circ x)) \circ x] + \zeta(b) \text{ (by given condition} (2))$

 $\leq \zeta[(b \circ (a \circ x)) \circ (b \circ x)] + \zeta(b)$ (by Lemma 2 (4)) $= \zeta[(a \circ (b \circ x)) \circ (b \circ x))] + \zeta(b)$ (by Lemma 2 (4)). $= \zeta[a \circ [(a \circ (b \circ x)) \circ (b \circ x)]] + \zeta(a) + \zeta(b)$ (by given condition (2)) $= \zeta(1) + \zeta(a) + \zeta(b)$ (by Lemma 2(5)) $= \zeta(a) + \zeta(b).$

Also $\zeta(x \circ y) \leq \zeta(y)$ by Lemma 2(2) and Proposition 1(1). Using Corollary 2 we get that ζ is a pseudo-valuation on X.

PROPOSITION 3. If ζ is a pseudo-valuation on a KU-algebra X, then (3.2) $a \leq b \circ x \Rightarrow \zeta(x) \leq \zeta(a) + \zeta(b) \ \forall a, b, x \in X.$

Proof. Suppose that $a, b, x \in X$ such that $a \leq b \circ x$. Then by Proposition 1 (3) and Theorem 2, we have that

$$\begin{aligned} \zeta(x) &\leq \zeta((a \circ (b \circ x)) \circ x) + \zeta(a \circ (b \circ x)) = \zeta((a \circ (b \circ x)) \circ x) + \zeta(1) = \\ \zeta((a \circ (b \circ x)) \circ x) \\ &\leq \zeta(a) + \zeta(b). \end{aligned}$$

THEOREM 4. Let ζ be a real-valued function on a KU-algebra X. If ζ satisfies $\zeta(1) = 0$ and condition (3.2), then ζ is a pseudo-valuation on X.

Proof. From Lemma 2 (5), we have $a \circ ((a \circ x) \circ x) = 1$, which implies from $x \leq y \iff x \circ y = 1$ that $a \leq (a \circ x) \circ x$, $\forall a, x \in X$. Thus it follows from Proposition 3 that $\zeta(x) \leq \zeta(a \circ x) + \zeta(a)$, $\forall a, x \in X$. Hence from Theorem 3, we conclude that ζ is a pseudo-valuation on X. \Box

PROPOSITION 4. Suppose that X is a KU-algebra. Then every pseudovaluation ζ on X satisfies the following inequality:

 \square

 $\zeta(x \circ z) \le \zeta(x \circ y) + \zeta(y \circ z), \, \forall x, y, z \in X.$

Proof. It follows from (ku1) and Theorem 4.

THEOREM 5. If ζ is a pseudo-valuation on a KU-algebra X, then the set $I := \{x \in X | \zeta(x) = 0\}$ is an ideal of X.

Proof. We have $\zeta(1) = 0$ and hence $1 \in I$. Next $x, y, z \in X$ be such that $y \in I$ and $x \circ (y \circ z) \in I$. Then $\zeta(y) = 0$ and $\zeta(x \circ (y \circ z)) = 0$. By Definition 3(2) we get that $\zeta(x \circ z) \leq \zeta(x \circ (y \circ z)) + \zeta(y) = 0$ so that $\zeta(x \circ z) = 0$. Hence $x \circ z \in I$, and therefore I is an ideal of X. \Box

EXAMPLE 4. Let $X = \{1, 2, 3, 4, 5, 6\}$ in which \circ is defined by the following table:

	0	1	2	3	4	5	6
-	1	1	2	3	4	5	6
	2	1	1	2	4	4	5
	3	1	1	1	4	4	4
	4	1	2	3	1	2	3
	5	1	1	2	1	1	2
	6	1	1	1	1	1	1

Clearly X is a KU-algebra. Now define a real-valued function ζ on X by $\zeta(1) = \zeta(2) = \zeta(3) = 0$, $\zeta(4) = 3$, $\zeta(5) = 1$ and $\zeta(6) = 2$. Then $I := \{x \in X \mid \zeta(x) = 1\} = \{2, 3, 4\}$ is the ideal of X. But ζ is not a pseudo-valuation as $\zeta(3 \circ 5) \not\leq \zeta(3 \circ (5 \circ 5)) + \zeta(5)$.

4. Pseudo-metric on KU-algebras

In this section we define pseudo-metric on KU-algebras and show related results.

THEOREM 6. Let X be a KU-algebra and ζ be a pseudo-valuation on X. Then the mapping $d_{\zeta} : X \times X \to \mathbb{R}$ defined by $d_{\zeta}(x,y) = \zeta(x \circ y) + \zeta(y \circ x) \quad \forall (x, y) \in X \times X$ is a metric on X, called pseudo-metric induced by pseudo-valuation ζ and correspondingly (X, d_{ζ}) is called a pseudo-metric space.

Proof. Clearly, $d_{\zeta}(x,y) \geq 1$, $d_{\zeta}(x,x) = 1$ and $d_{\zeta}(x,y) = d_{\zeta}(y,x)$ $\forall x, y \in X$. For any $x, y, z \in X$ from Proposition 4, we get that $d_{\zeta}(x,y) + d_{\zeta}(y,z) = [\zeta(x \circ y) + \zeta(y \circ x)] + [\zeta(y \circ z) + \zeta(z \circ y)] = [\zeta(x \circ y) + \zeta(y \circ z)] + [\zeta(z \circ y) + \zeta(y \circ x)] \geq \zeta(x \circ z) + \zeta(z \circ x) = d_{\zeta}(x,z)$. Hence (X, d_{ζ}) is a pseudo-metric space.

PROPOSITION 5. Let X be a KU-algebra. Then every pseudo-metric d_{ζ} induced by pseudo-valuation ζ satisfies the following inequalities:

 $(1) d_{\zeta}(x,y) \ge d_{\zeta}(x \circ a, y \circ a)$ $(2) d_{\zeta}(x,y) \ge d_{\zeta}(a \circ x, a \circ y),$ $(3) d_{\zeta}(x \circ y, a \circ b) \le d_{\zeta}(x \circ y, a \circ y) + d_{\zeta}(a \circ y, a \circ b) \ \forall x, y, a, b \in X.$

Proof. Let $x, y, a \in X$. By (ku5) $x \circ y \leq (y \circ a) \circ (x \circ a)$ and $y \circ x \leq (x \circ a) \circ (y \circ a)$. It follows from Proposition 1(1) that $\zeta(x \circ y) \geq \zeta((y \circ a) \circ (x \circ a))$

and $\zeta(y \circ x) \ge \zeta((x \circ a) \circ (y \circ a))$ so that $d_{\zeta}(x, y) = \zeta(x \circ y) + \zeta(y \circ x) \ge \zeta((y \circ a) \circ (x \circ a)) + \zeta((x \circ a) \circ (y \circ a)) = d_{\zeta}(x \circ a, y \circ a).$

- (2) Similar and followed by proof (1).
- (3) Followed by definition of pseudo-metric.

THEOREM 7. Let ζ be a real-valued function on a KU-algebra X, if d_{ζ} is a pseudo-metric on X, then $(X \times X, d_{\zeta}^{\circ})$ is a pseudo-metric space, where $d_{\zeta}^{\circ}((x, y), (a, b)) = max\{d_{\zeta}(x, a), d_{\zeta}(y, b)\} \ \forall (x, y), (a, b) \in X \times X.$

Proof. Suppose d_{ζ} is a pseudo-metric on X. For any $(x, y), (a, b) \in X \times X$, we have $d_{\zeta}^{\circ}((x, y), (x, y)) = \max \{d_{\zeta}(x, x), d_{\zeta}(y, y)\} = 0$ and $d_{\zeta}^{\circ}((x, y), (a, b)) = \max \{d_{\zeta}(x, a), d_{\zeta}(y, b)\} = \max \{d_{\zeta}(a, x), d_{\zeta}(b, y)\} = d^{\circ}((a, b), (x, y)).$ Now let $(x, y), (a, b), (u, v) \in X \times X$. Then we have $d_{\zeta}^{\circ}((x, y), (u, v)) + d_{\zeta}^{\circ}((u, v), (a, b)) = \max \{d_{\zeta}(x, u), d_{\zeta}(y, v)\} + \max \{d_{\zeta}(u, a), d_{\zeta}(v, b)\} \ge \max \{d_{\zeta}(x, u) + d_{\zeta}(u, a), d_{\zeta}(y, v) + d_{\zeta}(v, b)\} \ge \max \{d_{\zeta}(x, a), d_{\zeta}(y, b)\} = d_{\zeta}^{\circ}((x, y), (a, b)).$ Hence $(X \times X, d_{\zeta}^{\circ})$ is a pseudo-metric space.

COROLLARY 3. If $\zeta : X \to \mathbb{R}$ is a pseudo-valuation on a KU-algebra X, then $(X \times X, d_{\zeta}^{\circ})$ is a pseudo-metric space.

THEOREM 8. Let X be a KU-algebra. Further if $\zeta : X \to \mathbb{R}$ is a valuation on X, then (X, d_{ζ}) is a metric space.

Proof. Suppose ζ is a valuation on X. Then (X, d_{ζ}) is a pseudo-metric space by Theorem 6. Further consider $x, y \in X$ be such that $d_{\zeta}(x, y) = 0$. Then $0 = d_{\zeta}(x, y) = \zeta(x \circ y) + \zeta(y \circ x)$, and hence $\zeta(x \circ y) = 0$ and $\zeta(y \circ x) = 0$ since $\zeta(x) \ge 0 \ \forall x \in X$. And, since ζ is a valuation on X, it follows that $x \circ y = 1$ and $y \circ x = 1$ so from condition in the given theorem that x = y. Hence (X, d_{ζ}) is a metric space.

THEOREM 9. Let X be a KU-algebra. If $\zeta : X \to \mathbb{R}$ is a valuation on X, then $(X \times X, d_{\zeta}^{\circ})$ is a metric space.

Proof. From Corollary 3, we have that $(X \times X, d_{\zeta}^{\circ})$ is a pseudo-metric space. Suppose that $(x, y), (a, b) \in X \times X$ be such that $d_{\zeta}^{\circ}((x, y), (a, b)) =$ 0. Then $0 = d_{\zeta}^{\circ}((x, y), (a, b)) = \max \{ d_{\zeta}(x, a), d_{\zeta}(y, b) \}$, and so $d_{\zeta}(x, a) =$ $0 = d_{\zeta}(y, b)$ since $d_{\zeta}(x, y) \ge 0 \ \forall (x, y) \in X \times X$. Hence $0 = d_{\zeta}(x, a) =$ $\zeta(x \circ a) + \zeta(a \circ x)$ and $0 = d_{\zeta}(y, b) = \zeta(y \circ b) + \zeta(b \circ y)$. It follows that $\zeta(x \circ a) = 0 = \zeta(a \circ x)$ and $\zeta(y \circ b) = 0 = \zeta(b \circ y)$ so that $x \circ a = 1 = a \circ x$

and $y \circ b = 0 = b \circ y$. Now we have a = x and b = y, and so (x, y) = (a, b). Therefore $(X \times X, d_{\mathcal{C}}^{\circ})$ is a metric space.

THEOREM 10. Let X be a KU-algebra. If ζ is a valuation on X, then the operation \circ in X is uniformly continuous.

Proof. Consider for any $\delta > 0$, if $d_{\zeta}^{\circ}((x, y), (a, b)) < \frac{\delta}{2}$ then $d_{\zeta}(x, a) < \frac{\delta}{2}$ and $d_{\zeta}(y, b) < \frac{\delta}{2}$. This implies that $d_{\zeta}(x \circ y, a \circ b) \leq d_{\zeta}(x \circ y, a \circ y) + d_{\zeta}(a \circ y, a \circ b) \leq d_{\zeta}(x, a) + d_{\zeta}(y, b) < \frac{\delta}{2} + \frac{\delta}{2} = \delta$ (from Proposition 5). Therefore the operation $\circ : X \times X \to X$ is uniformly continuous. \Box

References

- [1] Moin A. Ansari and Ali N. A. Koam, *Rough Approximations in KU-Algebras*, Italian Journal of Pure and Applied Mathematics N. **40**, (2018), 679–691.
- [2] D. Busnęag, Hilbert algebras with valuations, Math. Japon. 44 (2), (1996), 285–289.
- [3] D. Busnęag, On extensions of pseudo-valuations on Hilbert algebras, Discrete Mathematics, 263 (1-3), (2003), 11-24.
- [4] D. Busneag, valuations on residuated latices, An. Univ. Craiova. Ser. Math. Inform. 34 (2007), 21–28.
- [5] M.I. Doh and M.S. Kang, BCK/BCI-algebras with pseudo-valuation, Honam Mathematical J. 32 (2) (2010), 271–226.
- [6] S. Ghorbani, Quotient BCI-algebras induced by pseudo-valuations, Iranian J. of Math. Sc. and Inform. 5 (2010), 13–24.
- [7] S.M. Mostafa, M.A. Abd-Elnaby and M.M.M. Yousef, Fuzzy ideals of KU-Algebras, Int. Math. Forum. 63 (6) (2011), 3139–3149.
- [8] Prabpayak and Leerawat, On ideals and congruences in KU-algebras, Scienctia Magna J. 5 (1) (2009), 54–57.
- [9] Prabpayak and Leerawat, On Isomorphisms of KU-algebras, Scientia Magna J. 5 (3) (2009), 25–31.
- [10] Y. Yang, X. Xin, EQ-algebras with pseudo pre-valuations, Italian J. of Pure and Applied Maths, 36 (2017), 29–48.
- [11] Naveed Yaqoob, Samy M. Mostafa and Moin A. Ansari, On cubic KU-ideals of KU-algebras, ISRN Algebras, Vol. 2013, Article ID 935905, (2013), 10 pages.
- [12] J. Zhan and Y. B. Jun, (Implicative) pseudo-valuations on R₀-algebras, U.P.B., Scientific Bulletin, **75** (2013), 101–112.

Ali N.A. Koam

Department of Mathematics, College of Science Post Box 2097 New Campus, Jazan University Jazan, KSA *E-mail*: akoum@jazanu.edu.sa

Azeem Haider

Department of Mathematics, College of Science Post Box 2097 New Campus, Jazan University Jazan, KSA *E-mail*: aahaider@jazanu.edu.sa

Moin A. Ansari

Department of Mathematics, College of Science Post Box 2097 New Campus, Jazan University Jazan, KSA *E-mail*: maansari@jazanu.edu.sa