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PSEUDO-METRIC ON KU-ALGEBRAS

Ali N.A. Koam, Azeem Haider, and Moin A. Ansari∗

Abstract. In this paper we have introduced the concept of pseudo-
metric which we induced from a pseudo-valuation on KU-algebras
and investigated the relationship between pseudo-valuations and ideals
of KU-algebras. Conditions for a real-valued function to be a pseudo-
valuation on KU-algebras are provided.

1. Introduction

Pseudo-metric induce by pseudo-valuations on Hilbert algebras was
initially introduced by Busnȩag [2]. Further Busnȩag [3] proved many
results on extensions of pseudo-valuations. Pseudo-valuations in residu-
ated lattices was introduced by Busnȩag [4] where many theorems based
on pseudo-valuations in lattice terms and their extension for residuated
lattices to pseudo-valuation from valuations has been shown using the
model of Hilbert algebras [3].
Logical algebras have become the keen interest for researchers in recent
years and intensively studied under the influence of different mathe-
matical concepts. Doh and Kang [5] introduced the concept of pseudo-
valuation on BCK/BCI algebras and studied results based on them.
Ghorbani [6] defined congruence relations and gave quotient structure
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of BCI-algebras based on pseudo-valuation. Zhan and Jun [12] stud-
ied pseudo valuation on R0-algebras. Based on the concept of pseudo-
valuation in R0-algebras, Yang and Xin [10] characterized pseudo pre-
valuations on EQ-algebras.
KU-algebras were introduced by Prabpayak and Leerawat [8] in 2009.
Further Prabpayak and Leerawat [9] studied homomorphisms and re-
lated properties with KU-algebras. Naveed et. al [11] introduced the
concept of cubic KU-ideals of KU-algebras. Recently Ansari and Koam
[1] gave the concept of roughness in KU-Algebras.
We define a pseudo-valuations on KU-algebras using the model of Busnȩag
and introduce a pseudo-metric on KU-algebras. We also prove that the
binary operation defined on KU-algebras is uniformly continuous under
the induced pseudo-metric.

2. Preliminaries

In this section, we shall consider concepts based on KU-algebras, KU-
ideals and other important terminologies with examples and some related
results.

Definition 1. [8] By a KU-algebra we mean an algebra (X, ◦, 1) of
type (2, 0) with a single binary operation ◦ that satisfies the following
identities: for any x, y, z ∈ X,

(ku1) (x ◦ y) ◦ [(y ◦ z) ◦ (x ◦ z)] = 1,
(ku2) x ◦ 1 = 1,
(ku3) 1 ◦ x = x,
(ku4) x ◦ y = y ◦ x = 1 implies x = y.

In what follows, let (X, ◦, 1) denote a KU-algebra unless otherwise
specified. For brevity we also call X a KU-algebra. In X we can define
a binary relation ≤ by : x ≤ y if and only if x ◦ y = 1.

Lemma 1. [8] (X, ◦, 1) is a KU-algebra if and only if it satisfies:
(ku5) x ◦ y ≤ (y ◦ z) ◦ (x ◦ z),
(ku6) x ≤ 1,
(ku7) x ≤ y, y ≤ x implies x = y,

Lemma 2. In a KU-algebra, the following identities are true [7]:
(1) z ◦ z = 1,
(2) z ◦ (x ◦ z) = 1,
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(3) x ≤ y imply y ◦ z ≤ x ◦ z,
(4) z ◦ (y ◦ x) = y ◦ (z ◦ x),
(5) y ◦ [(y ◦ x) ◦ x] = 1, for all x, y, z ∈ X,

Example 1. [7] Let X = {1, 2, 3, 4, 5} in which ◦ is defined by the
following table

◦ 1 2 3 4 5

1 1 2 3 4 5
2 1 1 3 4 5
3 1 2 1 4 4
4 1 1 3 1 3
5 1 1 1 1 1

It is easy to see that X is a KU-algebra.

Definition 2. [8] A non-empty subset A of a KU-algebra X is called
a KU-ideal of X if it satisfies the following conditions:

(1) 1 ∈ A,
(2) x ◦ (y ◦ z) ∈ A, y ∈ A imply x ◦ z ∈ A, for all x, y, z ∈ X.

Example 2. [1] Let X = {1, 2, 3, 4, 5, 6} in which ◦ is defined by the
following table:

◦ 1 2 3 4 5 6

1 1 2 3 4 5 6
2 1 1 3 3 5 6
3 1 1 1 2 5 6
4 1 1 1 1 5 6
5 1 1 1 2 1 6
6 1 1 2 1 1 1

Clearly (X, ◦, 1) is a KU-algebra. It is easy to show that A = {1, 2} and
B = {1, 2, 3, 4, 5} are KU-ideals of X.

3. Pseudo-valuations on KU-algebras

Definition 3. A real-valued function ζ on a KU-algebra X is called
a pseudo-valuation on X if it satisfies the following two conditions:

(1) ζ(1) = 0
(2) ζ(x ◦ z) ≤ ζ(x ◦ (y ◦ z)) + ζ(y) ∀x, y, z ∈ X
A pseudo-valuation ζ on a KU-algebra X satisfying the following con-

dition:
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ζ(x) = 0⇒ x = 1 ∀x ∈ X is called a valuation on X.

Example 3. Let X = {1, 2, 3, 4} be a set with operation ◦. A table
for such X is defined by following table

◦ 1 2 3 4

1 1 2 3 4
2 1 1 3 4
3 1 1 1 1
4 1 2 3 1

Here X is a KU-algebra. We find that a real valued function defined on
X by
ζ(1) = 0, ζ(2) = 1, ζ(3) = ζ(4) = 3, is a pseudo-valuation on X.

Proposition 1. Let ζ be a pseudo-valuation on a KU-algebra X.
Then we have

(1) x ≤ y ⇒ ζ(y) ≤ ζ(x).
(2) ζ(x ◦ y) ≤ ζ(y) ∀x, y ∈ X.
(3) ζ((x ◦ (y ◦ z)) ◦ z) ≤ ζ(x) + ζ(y) ∀x, y, z ∈ X.
Proof. (1) Let x, y ∈ X be such that x ≤ y. Now choosing x = 1,

y = x, z = y, in Definition 3(1),(2) and using (ku3) we get
ζ(y) = ζ(1◦y) ≤ ζ(1◦ (x◦y))+ζ(x) = ζ(1◦1)+ζ(x) = ζ(1)+ζ(x) =

ζ(x).

(2) If we choose z = y in Definition 3(2), then we get ζ(x ◦ y) ≤
ζ(x ◦ (y ◦ y)) + ζ(y) = ζ(x ◦ 1) + ζ(y) = ζ(1) + ζ(y) = ζ(y) ∀x, y ∈ X.

(3) If we choose x = x ◦ (y ◦ z) in Definition 3(2) then we get

(3.1) ζ((x ◦ (y ◦ z)) ◦ z) ≤ ζ((x ◦ (y ◦ z)) ◦ (y ◦ z)) + ζ(y)

Now using the relation≤ and Lemma 2 (5), we get x ≤ (x◦(y◦z))◦(y◦z).
By Proposition 1, it follows that ζ((x◦ (y ◦z))◦ (y ◦z)) ≤ ζ(x) using this
relation in Equation 3.1, we get ζ((x◦(y◦z))◦z) ≤ ζ(x)+ζ(y) ∀x, y, z ∈
X.

Corollary 1. Every pseudo-valuation ζ on a KU-algebra X satisfies
the following inequality ζ(x) ≥ 0 ∀x ∈ X.

Proposition 2. If ζ is a pseudo-valuation on a KU-algebra X, then
we have
ζ((x ◦ y) ◦ y) ≤ ζ(x) ∀x, y ∈ X.
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Proof. Choosing y = 1 and z = y in Proposition 1, using (ku3) and
Definition 3(1) we get that
ζ((x ◦ y) ◦ y) = ζ((x ◦ (1 ◦ y)) ◦ y) ≤ ζ(x) + ζ(1) = ζ(x) ∀x, y ∈ X.

The following theorem provides conditions for a real valued function
on a KU-algebra X to be a pseudo-valuation on X.

Theorem 1. Let ζ be a real valued function on a KU-algebra X
satisfying the following conditions.

(1) If ζ(a) ≤ ζ(x) ∀x ∈ X, then ζ(a) = 1.
(2) ζ(x ◦ y) ≤ ζ(y) ∀x, y ∈ X.
(3) ζ((x ◦ (y ◦ z)) ◦ z) ≤ ζ(x) + ζ(y).

Then ζ is a pseudo-valuation on X

Proof. From Lemma 2 (1) and given condition (2), we have ζ(1) =
ζ(x ◦ x) ≤ ζ(x) ∀x ∈ X and hence ζ(1) = 0, using given condition (1).
Now, from (ku3), Lemma 2 (1) and given condition (3), we get ζ(y) =
ζ(1 ◦ y) = ζ(((x ◦ y) ◦ (x ◦ y)) ◦ y) ≤ ζ(x ◦ y) + ζ(x) ∀x, y ∈ X. It follows
from Lemma 2 (4) that ζ(x◦z) ≤ ζ(y◦(x◦z))+ζ(y) = ζ(x◦(y◦z))+ζ(y)
∀x, y, z ∈ X. Therefore ζ is a pseudo-valuation on X.

Corollary 2. Let ζ be a real-valued function on a KU-algebra X
satisfying the following conditions:

(1) ζ(1) = 0
(2) ζ(x ◦ y) ≤ ζ(y), ∀x, y ∈ X).
(3) ζ((x ◦ (y ◦ z) ◦ z) ≤ ζ(x) + ζ(y)), ∀x, y, z ∈ X.

Then ζ is a pseudo-valuation on X.

Theorem 2. If ζ is a pseudo-valuation on a KU-algebra X, then
ζ(y) ≤ ζ(x ◦ y) + ζ(x)), ∀x, y ∈ X.

Proof. Let m = (x ◦ y) ◦ y for any x, y ∈ X, and n = x ◦ y.
Then y = 1 ◦ y = (((x ◦ y) ◦ y) ◦ ((x ◦ y) ◦ y)) ◦ y = (m ◦ (n ◦ y)) ◦ y. It

follows from Theorem 2, Propositions 1 and Propositions 2 that ζ(y) =
ζ((m◦(n◦y))◦y) ≤ ζ(m)+ζ(n) = ζ((x◦y)◦y)+ζ(x◦y) ≤ ζ(x)+ζ(x◦y).
This completes the proof.

Theorem 3. Let ζ be a real-valued function on a KU-algebra X
satisfying the following conditions.

(1) ζ(1) = 0
(2) ζ(y) ≤ ζ(x ◦ y) + ζ(x), ∀x, y ∈ X.

Then ζ is a pseudo-valuation on X.
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Proof. By Lemma 2 (4), Lemma 2 (5) and given condition (2), we
have
ζ[(b ◦ (a ◦ x) ◦ x)] ≤ ζ[b ◦ ((b ◦ (a ◦ x)) ◦ x]+ ζ(b) (by given condition

(2))
≤ ζ[(b ◦ (a ◦ x)) ◦ (b ◦ x)]+ ζ(b) (by Lemma 2 (4))

= ζ[(a ◦ (b ◦ x)) ◦ (b ◦ x))]+ζ(b) (by Lemma 2 (4)).
= ζ[a ◦ [(a ◦ (b ◦x)) ◦ (b ◦x)]] + ζ(a) + ζ(b) (by given condition (2))
= ζ(1) + ζ(a) + ζ(b) (by Lemma 2(5))
= ζ(a) + ζ(b).
Also ζ(x ◦ y) ≤ ζ(y) by Lemma 2(2) and Proposition 1(1). Using

Corollary 2 we get that ζ is a pseudo-valuation on X.

Proposition 3. If ζ is a pseudo-valuation on a KU-algebra X, then

(3.2) a ≤ b ◦ x⇒ ζ(x) ≤ ζ(a) + ζ(b) ∀a, b, x ∈ X.
Proof. Suppose that a, b, x ∈ X such that a ≤ b ◦ x. Then by Propo-

sition 1 (3) and Theorem 2, we have that
ζ(x) ≤ ζ((a ◦ (b ◦ x)) ◦ x) + ζ(a ◦ (b ◦ x)) = ζ((a ◦ (b ◦ x)) ◦ x) + ζ(1) =

ζ((a ◦ (b ◦ x)) ◦ x)
≤ ζ(a) + ζ(b).

Theorem 4. Let ζ be a real-valued function on a KU-algebra X. If
ζ satisfies ζ(1) = 0 and condition (3.2), then ζ is a pseudo-valuation on
X.

Proof. From Lemma 2 (5), we have a◦ ((a◦x)◦x) = 1, which implies
from x ≤ y ⇐⇒ x ◦ y = 1 that a ≤ (a ◦ x) ◦ x, ∀a, x ∈ X. Thus it
follows from Proposition 3 that ζ(x) ≤ ζ(a◦x)+ ζ(a), ∀a, x ∈ X. Hence
from Theorem 3, we conclude that ζ is a pseudo-valuation on X.

Proposition 4. Suppose thatX is a KU-algebra. Then every pseudo-
valuation ζ on X satisfies the following inequality:
ζ(x ◦ z) ≤ ζ(x ◦ y) + ζ(y ◦ z), ∀x, y, z ∈ X.
Proof. It follows from (ku1) and Theorem 4.

Theorem 5. If ζ is a pseudo-valuation on a KU-algebra X, then the
set I := {x ∈ X|ζ(x) = 0} is an ideal of X.

Proof. We have ζ(1) = 0 and hence 1 ∈ I. Next x, y, z ∈ X be such
that y ∈ I and x ◦ (y ◦ z) ∈ I. Then ζ(y) = 0 and ζ(x ◦ (y ◦ z)) = 0. By
Definition 3(2) we get that ζ(x ◦ z) ≤ ζ(x ◦ (y ◦ z)) + ζ(y) = 0 so that
ζ(x ◦ z) = 0. Hence x ◦ z ∈ I, and therefore I is an ideal of X.
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Example 4. Let X = {1, 2, 3, 4, 5, 6} in which ◦ is defined by the
following table:

◦ 1 2 3 4 5 6

1 1 2 3 4 5 6
2 1 1 2 4 4 5
3 1 1 1 4 4 4
4 1 2 3 1 2 3
5 1 1 2 1 1 2
6 1 1 1 1 1 1

Clearly X is a KU-algebra. Now define a real-valued function ζ on
X by ζ(1) = ζ(2) = ζ(3) = 0, ζ(4) = 3, ζ(5) = 1 and ζ(6) = 2. Then
I := {x ∈ X | ζ(x) = 1} = {2, 3, 4} is the ideal of X. But ζ is not a
pseudo-valuation as ζ(3 ◦ 5) � ζ(3 ◦ (5 ◦ 5)) + ζ(5).

4. Pseudo-metric on KU-algebras

In this section we define pseudo-metric on KU-algebras and show
related results.

Theorem 6. Let X be a KU-algebra and ζ be a pseudo-valuation
on X. Then the mapping dζ : X × X → R defined by dζ(x, y) =
ζ(x◦y)+ζ(y ◦x) ∀(x, y) ∈ X×X is a metric on X, called pseudo-metric
induced by pseudo-valuation ζ and correspondingly (X, dζ) is called a
pseudo-metric space.

Proof. Clearly, dζ (x, y) ≥ 1, dζ (x, x) = 1 and dζ (x, y) = dζ(y, x)
∀x, y ∈ X. For any x, y, z ∈ X from Proposition 4 , we get that dζ(x, y)+
dζ(y, z) = [ζ(x ◦ y) + ζ(y ◦ x)] + [ζ(y ◦ z) + ζ(z ◦ y)] = [ζ(x ◦ y) + ζ(y ◦
z)] + [ζ(z ◦ y) + ζ(y ◦ x)] ≥ ζ(x ◦ z) + ζ(z ◦ x) = dζ(x, z). Hence (X, dζ)
is a pseudo-metric space.

Proposition 5. Let X be a KU-algebra. Then every pseudo-metric
dζ induced by pseudo-valuation ζ satisfies the following inequalities:

(1) dζ(x, y) ≥ dζ(x ◦ a, y ◦ a)
(2) dζ(x, y) ≥ dζ(a ◦ x, a ◦ y),
(3) dζ(x ◦ y, a ◦ b) ≤ dζ(x ◦ y, a ◦ y) + dζ(a ◦ y, a ◦ b) ∀x, y, a, b ∈ X.

Proof. Let x, y, a ∈ X. By (ku5) x◦y ≤ (y◦a)◦(x◦a) and y◦x ≤ (x◦
a)◦(y◦a). It follows from Proposition 1(1) that ζ(x◦y) ≥ ζ((y◦a)◦(x◦a))
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and ζ(y ◦ x) ≥ ζ((x ◦ a) ◦ (y ◦ a)) so that dζ(x, y) = ζ(x ◦ y) + ζ(y ◦ x) ≥
ζ((y ◦ a) ◦ (x ◦ a))+ ζ((x ◦ a) ◦ (y ◦ a)) = dζ(x ◦ a, y ◦ a).

(2) Similar and followed by proof (1).
(3) Followed by definition of pseudo-metric.

Theorem 7. Let ζ be a real-valued function on a KU-algebra X, if
dζ is a pseudo-metric on X, then (X ×X, d◦ζ) is a pseudo-metric space,
where d◦ζ((x, y), (a, b)) = max{dζ(x, a), dζ(y, b)} ∀(x, y), (a, b) ∈ X ×X.

Proof. Suppose dζ is a pseudo-metric on X. For any (x, y), (a, b) ∈
X ×X, we have d◦ζ((x, y), (x, y)) = max {dζ(x, x), dζ(y, y)} = 0 and
d◦ζ((x, y), (a, b)) = max {dζ(x, a), dζ(y, b)} = max {dζ(a, x), dζ(b, y)} =
d◦((a, b), (x, y)).
Now let (x, y), (a, b), (u, v) ∈ X × X. Then we have d◦ζ((x, y), (u, v))+
d◦ζ((u, v), (a, b)) =
max {dζ(x, u), dζ(y, v)} + max {dζ(u, a), dζ(v, b)} ≥ max {dζ(x, u) +
dζ(u, a), dζ(y, v) +dζ(v, b)} ≥ max {dζ(x, a), dζ(y, b)} = d◦ζ((x, y), (a, b)).
Hence (X ×X, d◦ζ) is a pseudo-metric space.

Corollary 3. If ζ : X → R is a pseudo-valuation on a KU-algebra
X, then (X ×X, d◦ζ) is a pseudo-metric space.

Theorem 8. Let X be a KU-algebra. Further if ζ : X → R is a
valuation on X, then (X, dζ) is a metric space.

Proof. Suppose ζ is a valuation on X. Then (X, dζ) is a pseudo-metric
space by Theorem 6. Further consider x, y ∈ X be such that dζ(x, y) = 0.
Then 0 = dζ(x, y) = ζ(x ◦ y) + ζ(y ◦ x), and hence ζ(x ◦ y) = 0 and
ζ(y ◦ x) = 0 since ζ(x) ≥ 0 ∀x ∈ X. And, since ζ is a valuation on X,
it follows that x ◦ y = 1 and y ◦ x = 1 so from condition in the given
theorem that x = y. Hence (X, dζ) is a metric space.

Theorem 9. Let X be a KU-algebra. If ζ : X → R is a valuation on
X, then (X ×X, d◦ζ) is a metric space.

Proof. From Corollary 3, we have that (X×X, d◦ζ) is a pseudo-metric
space. Suppose that (x, y), (a, b) ∈ X×X be such that d◦ζ((x, y), (a, b)) =
0. Then 0 = d◦ζ((x, y), (a, b)) = max {dζ(x, a), dζ(y, b)}, and so dζ(x, a) =
0 = dζ(y, b) since dζ(x, y) ≥ 0 ∀(x, y) ∈ X × X. Hence 0 = dζ(x, a) =
ζ(x ◦ a) + ζ(a ◦ x) and 0 = dζ(y, b) = ζ(y ◦ b) + ζ(b ◦ y). It follows that
ζ(x◦a) = 0 = ζ(a◦x) and ζ(y ◦b) = 0 = ζ(b◦y) so that x◦a = 1 = a◦x
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and y◦b = 0 = b◦y. Now we have a = x and b = y, and so (x, y) = (a, b).
Therefore (X ×X, d◦ζ) is a metric space.

Theorem 10. Let X be a KU-algebra. If ζ is a valuation on X, then
the operation ◦ in X is uniformly continuous.

Proof. Consider for any δ>0, if d◦ζ((x, y), (a, b)) < δ
2

then dζ(x, a) < δ
2

and dζ(y, b) <
δ
2
. This implies that dζ(x ◦ y, a ◦ b) ≤ dζ(x ◦ y, a ◦ y) +

dζ(a ◦ y, a ◦ b) ≤ dζ(x, a) + dζ(y, b) <
δ
2
+ δ

2
= δ (from Proposition 5).

Therefore the operation ◦ : X ×X → X is uniformly continuous.
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[2] D. Busnȩag, Hilbert algebras with valuations, Math. Japon. 44 (2), (1996), 285–
289.
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