DOI QR코드

DOI QR Code

Porphyromonas gingivalis lipopolysaccharide stimulates vascular smooth muscle cell migration through signal transducer and activator of transcription 3-mediated matrix metalloproteinase-9 expression

  • Kim, Yeon (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Park, Joo-Yeon (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Park, Hyun-Joo (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Kim, Mi-Kyoung (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Kim, Yong-Il (Department of Orthodontics, School of Dentistry, Pusan National University) ;
  • Bae, Soo-Kyung (Department of Dental Pharmacology, School of Dentistry, Pusan National University) ;
  • Kim, Hyung Joon (Department of Oral Physiology, School of Dentistry, Pusan National University) ;
  • Bae, Moon-Kyoung (Department of Oral Physiology, School of Dentistry, Pusan National University)
  • Received : 2018.12.10
  • Accepted : 2019.02.07
  • Published : 2019.03.31

Abstract

Periodontal diseases have been associated with the development of cardiovascular diseases. Accumulating evidences have indicated that Porphyromonas gingivalis, a major periodontopathic pathogen, plays a critical role in the pathogenesis of atherosclerosis. In the present study, we demonstrated that P. gingivalis lipopolysaccharide (LPS) increases the mRNA and protein expression of matrix metalloproteinase-9 (MMP-9) in rat vascular smooth muscle cells. We showed that the MMP-9 expression induced by P. gingivalis LPS is mediated by the activation of signal transducer and activator of transcription 3 (STAT3) in vascular smooth muscle cells. Furthermore, the inhibition of STAT3 activity reduced P. gingivalis LPS-induced migration of vascular smooth muscle cells. Overall, our findings indicate that P. gingivalis LPS stimulates the migration of vascular smooth muscle cells via STAT3-mediated MMP-9 expression.

Keywords

References

  1. Hegde R, Awan KH. Effects of periodontal disease on systemic health. Dis Mon 2018. doi: 10.1016/j.disamonth.2018.09.011. [Epub ahead of print]
  2. Nguyen CM, Kim JW, Quan VH, Nguyen BH, Tran SD. Periodontal associations in cardiovascular diseases: the latest evidence and understanding. J Oral Biol Craniofac Res 2015;5:203-6. doi: 10.1016/j.jobcr.2015.06.008.
  3. Kholy KE, Genco RJ, Van Dyke TE. Oral infections and cardiovascular disease. Trends Endocrinol Metab 2015;26:315-21. doi: 10.1016/j.tem.2015.03.001.
  4. Gibson FC 3rd, Yumoto H, Takahashi Y, Chou HH, Genco CA. Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis. J Dent Res 2006;85:106-21. doi: 10.1177/154405910608500202.
  5. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 2000;71:1554-60. doi: 10.1902/jop.2000.71.10.1554.
  6. Fiehn NE, Larsen T, Christiansen N, Holmstrup P, Schroeder TV. Identification of periodontal pathogens in atherosclerotic vessels. J Periodontol 2005;76:731-6. doi: 10.1902/jop.2005.76.5.731.
  7. Kozarov EV, Dorn BR, Shelburne CE, Dunn WA Jr, Progulske-Fox A. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler Thromb Vasc Biol 2005;25:e17-8. doi: 10.1161/01.ATV.0000155018.67835.1a.
  8. Jain S, Darveau RP. Contribution of Porphyromonas gingivalis lipopolysaccharide to periodontitis. Periodontol 2000 2010;54:53-70. doi: 10.1111/j.1600-0757.2009.00333.x.
  9. Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res 2007;101:234-47. doi: 10.1161/CIRCRESAHA.107.151860b.
  10. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009;78:539-52. doi: 10.1016/j.bcp.2009.04.029.
  11. Pouliot M, Clish CB, Petasis NA, Van Dyke TE, Serhan CN. Lipoxin A(4) analogues inhibit leukocyte recruitment to Porphyromonas gingivalis: a role for cyclooxygenase-2 and lipoxins in periodontal disease. Biochemistry 2000;39:4761-8. doi: 10.1021/bi992551b.
  12. Choi EK, Kang MS, Oh BH, Kim SY, Kim SH, Kang IC. Aggregatibacter actinomycetemcomitans strongly stimulates endothelial cells to produce monocyte chemoattractant protein-1 and interleukin-8. Int J Oral Biol 2012;37:137-45.
  13. Kim Y, Kim SJ, Kim MK, Park HJ, Kim HJ, Bae SK, Bae MK. Porphyromonas gingivalis lipopolysaccharide regulates migration of vascular smooth muscle cells. Int J Oral Biol 2016;33:217-23. doi: 10.11620/IJOB.2016.41.4.217.
  14. Newby AC. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 2006;69:614-24. doi: 10.1016/j.cardiores.2005.08.002.
  15. Ghosh A, Pechota A, Coleman D, Upchurch GR Jr, Eliason JL. Cigarette smoke-induced MMP2 and MMP9 secretion from aortic vascular smooth cells is mediated via the Jak/Stat pathway. Hum Pathol 2015;46:284-94. doi: 10.1016/j.humpath.2014.11.003.
  16. Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 2002;8:1249-56. doi: 10.1038/nm1102-1249.
  17. Willis AI, Pierre-Paul D, Sumpio BE, Gahtan V. Vascular smooth muscle cell migration: current research and clinical implications. Vasc Endovascular Surg 2004;38:11-23. doi: 10.1177/153857440403800102.
  18. Chistiakov DA, Orekhov AN, Bobryshev YV. Links between atherosclerotic and periodontal disease. Exp Mol Pathol 2016;100:220-35. doi: 10.1016/j.yexmp.2016.01.006.
  19. Kim SR, Jeon HJ, Park HJ, Kim MK, Choi WS, Jang HO, Bae SK, Jeong CH, Bae MK. Glycyrrhetinic acid inhibits Porphyromonas gingivalis lipopolysaccharide-induced vascular permeability via the suppression of interleukin-8. Inflamm Res 2013;62:145-54. doi: 10.1007/s00011-012-0560-5.
  20. Yang WW, Guo B, Jia WY, Jia Y. Porphyromonas gingivalis-derived outer membrane vesicles promote calcification of vascular smooth muscle cells through ERK1/2-RUNX2. FEBS Open Bio 2016;6:1310-9. doi: 10.1002/2211-5463.12151.
  21. Liu G, Deng J, Zhang Q, Song W, Chen S, Lou X, Zhang P, Pan K. Porphyromonas gingivalis lipopolysaccharide stimulation of vascular smooth muscle cells activates proliferation and calcification. J Periodontol 2016;87:828-36. doi: 10.1902/jop.2016.150602.
  22. Chen TC, Lin CT, Chien SJ, Chang SF, Chen CN. Regulation of calcification in human aortic smooth muscle cells infected with high-glucose-treated Porphyromonas gingivalis. J Cell Physiol 2018;233:4759-69. doi: 10.1002/jcp.26268.
  23. Cao C, Ji X, Luo X, Zhong L. Gingipains from Porphyromonas gingivalis promote the transformation and proliferation of vascular smooth muscle cell phenotypes. Int J Clin Exp Med 2015;8:18327-34.
  24. Caird J, Napoli C, Taggart C, Farrell M, Bouchier-Hayes D. Matrix metalloproteinases 2 and 9 in human atherosclerotic and non-atherosclerotic cerebral aneurysms. Eur J Neurol 2006;13:1098-105. doi: 10.1111/j.1468-1331.2006.01469.x.
  25. Wagsater D, Zhu C, Bjorkegren J, Skogsberg J, Eriksson P. MMP-2 and MMP-9 are prominent matrix metalloproteinases during atherosclerosis development in the Ldlr(-/-) Apob(100/100) mouse. Int J Mol Med 2011;28:247-53. doi: 10.3892/ijmm.2011.693.
  26. Mason DP, Kenagy RD, Hasenstab D, Bowen-Pope DF, Seifert RA, Coats S, Hawkins SM, Clowes AW. Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circ Res 1999;85:1179-85. https://doi.org/10.1161/01.RES.85.12.1179
  27. Gu Y, Lee HM, Sorsa T, Salminen A, Ryan ME, Slepian MJ, Golub LM. Non-antibacterial tetracyclines modulate mediators of periodontitis and atherosclerotic cardiovascular disease: a mechanistic link between local and systemic inflammation. Pharmacol Res 2011;64:573-9. doi: 10.1016/j.phrs.2011.06.023.
  28. Deleon-Pennell KY, de Castro Bras LE, Lindsey ML. Circulating Porphyromonas gingivalis lipopolysaccharide resets cardiac homeostasis in mice through a matrix metalloproteinase-9-dependent mechanism. Physiol Rep 2013;1:e00079. doi: 10.1002/phy2.79.
  29. Vincenti MP, Brinckerhoff CE. Signal transduction and celltype specific regulation of matrix metalloproteinase gene expression: can MMPs be good for you? J Cell Physiol 2007;213:355-64. doi: 10.1002/jcp.21208.
  30. Cheng G, Wei L, Xiurong W, Xiangzhen L, Shiguang Z, Songbin F. IL-17 stimulates migration of carotid artery vascular smooth muscle cells in an MMP-9 dependent manner via p38 MAPK and ERK1/2-dependent NF-kappaB and AP-1 activation. Cell Mol Neurobiol 2009;29:1161-8. doi: 10.1007/s10571-009-9409-z.
  31. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 2010;21:11-9. doi: 10.1016/j.cytogfr.2009.11.005.
  32. Dhar K, Rakesh K, Pankajakshan D, Agrawal DK. SOCS3 promotor hypermethylation and STAT3-NF-${\kappa}B$ interaction downregulate SOCS3 expression in human coronary artery smooth muscle cells. Am J Physiol Heart Circ Physiol 2013;304:H776-85. doi: 10.1152/ajpheart.00570.2012.