DOI QR코드

DOI QR Code

IMPROVING THE POCKLINGTON AND PADRÓ-SÁEZ CUBE ROOT ALGORITHM

  • Received : 2016.09.22
  • Accepted : 2019.03.04
  • Published : 2019.03.31

Abstract

In this paper, we present a cube root algorithm using a recurrence relation. Additionally, we compare the implementations of the Pocklington and $Padr{\acute{o}}-S{\acute{a}}ez$ algorithm with the Adleman-Manders-Miller algorithm. With the recurrence relations, we improve the Pocklington and $Padr{\acute{o}}-S{\acute{a}}ez$ algorithm by using a smaller base for exponentiation. Our method can reduce the average number of ${\mathbb{F}}_q$ multiplications.

Keywords

TABLE 1. Adleman-Manders-Miller’s cube root algorithm [1]

E1BMAX_2019_v56n2_277_t0001.png 이미지

TABLE 2. Pocklington and Padro-Saez cube root algorithm [4]

E1BMAX_2019_v56n2_277_t0002.png 이미지

TABLE 3. Theoretical estimation (average number of $\mathbb{F}_q$ multiplications)

E1BMAX_2019_v56n2_277_t0003.png 이미지

TABLE 4. Running time (in seconds) for cube root computa-tion with p ≈ 22000

E1BMAX_2019_v56n2_277_t0004.png 이미지

TABLE 5. Running time (in seconds) for cube root computa-tion with p ≈ 23000

E1BMAX_2019_v56n2_277_t0005.png 이미지

References

  1. L. Adleman, K. Manders, and G. Miller, On taking roots in finite fields, in 18th Annual Symposium on Foundations of Computer Science (Providence, R.I., 1977), 175-178, IEEE Comput. Sci., Long Beach, CA, 1977.
  2. Z. Cao, Q. Sha, and X. Fan, Adleman-Manders-Miller root extraction method revisited, in Information security and cryptology, 77-85, Lecture Notes in Comput. Sci., 7537, Springer, Heidelberg, 2012.
  3. M. Cipolla, Un metodo per la risolutione della congruenza di secondo grado, Rendiconto dell'Accademia Scienze Fisiche e Matematiche, Napoli, Ser. 3, 9 (1903), 154-163.
  4. G. Heo, S. Choi, K. H. Lee, N. Koo, and S. Kwon, Remarks on the Pocklington and Padro-Saez cube root algorithm in $F_q$, Electronics Letters 50 (2014), no. 14, 1002-1003. https://doi.org/10.1049/el.2014.1037
  5. D. H. Lehmer, Computer technology applied to the theory of numbers, in Studies in Number Theory, 117-151, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1969.
  6. C. Padro and G. Saez, Taking cube roots in ${\mathbb{Z}}_m$, Appl. Math. Lett. 15 (2002), no. 6, 703-708. https://doi.org/10.1016/S0893-9659(02)00031-9
  7. H. C. Pocklington, The direct solution of the quadratic and cubic binomial congruences with prime moduli, Proceedings of the Cambridge Philosophical Society 19 (1917), 57-59.
  8. D. Shanks, Five number-theoretic algorithms, in Proceedings of the Second Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1972), 51-70. Congressus Numerantium, VII, Utilitas Math., Winnipeg, MB, 1973.
  9. A. Tonelli, Bemerkung uber die Au osung quadratischer Congruenzen, Nachrichten von der Konigl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universitat zu Gottingen, pp. 344-346, 1891.