DOI QR코드

DOI QR Code

POTENTIALLY EVENTUALLY POSITIVE BROOM SIGN PATTERNS

  • Yu, Ber-Lin (Faculty of Mathematics and Physics Huaiyin Institute of Technology)
  • 투고 : 2017.12.22
  • 심사 : 2019.03.04
  • 발행 : 2019.03.31

초록

A sign pattern is a matrix whose entries belong to the set {+, -, 0}. An n-by-n sign pattern ${\mathcal{A}}$ is said to allow an eventually positive matrix or be potentially eventually positive if there exist at least one real matrix A with the same sign pattern as ${\mathcal{A}}$ and a positive integer $k_0$ such that $A^k>0$ for all $k{\geq}k_0$. Identifying the necessary and sufficient conditions for an n-by-n sign pattern to be potentially eventually positive, and classifying the n-by-n sign patterns that allow an eventually positive matrix are two open problems. In this article, we focus on the potential eventual positivity of broom sign patterns. We identify all the minimal potentially eventually positive broom sign patterns. Consequently, we classify all the potentially eventually positive broom sign patterns.

키워드

E1BMAX_2019_v56n2_305_f0001.png 이미지

FIGURE 1. The graph of broom sign patten B4,5.

참고문헌

  1. M. Archer, M. Catral, C. Erickson, R. Haber, L. Hogben, X. Martinez-Rivera, and A. Ochoa, Constructions of potentially eventually positive sign patterns with reducible positive part, Involve 4 (2011), no. 4, 405-410. https://doi.org/10.2140/involve.2011.4.405
  2. A. Berman, M. Catral, L. M. Dealba, A. Elhashash, F. Hall, L. Hogben, I. J. Kim, D. D. Olesky, P. Tarazaga, M. J. Tsatsomeros, and P. van den Driessche, Sign patterns that allow eventual positivity, Electron. J. Linear Algebra 19 (2009), 108-120.
  3. R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Encyclopedia of Mathematics and its Applications, 39, Cambridge University Press, Cambridge, 1991.
  4. R. A. Brualdi and B. L. Shader, Matrices of Sign-Solvable Linear Systems, Cambridge Tracts in Mathematics, 116, Cambridge University Press, Cambridge, 1995.
  5. M. Catral, L. Hogben, D. D. Olesky, and P. van den Driessche, Sign patterns that require or allow power-positivity, Electron. J. Linear Algebra 19 (2009), 121-128.
  6. E. M. Ellison, L. Hogben, and M. J. Tsatsomeros, Sign patterns that require eventual positivity or require eventual nonnegativity, Electron. J. Linear Algebra 19 (2009), 98-107.
  7. R. A. Horn and C. R. Johnson, Matrix Analysis, second edition, Cambridge University Press, Cambridge, 2013.
  8. D. Noutsos and M. J. Tsatsomeros, Reachability and holdability of nonnegative states, SIAM J. Matrix Anal. Appl. 30 (2008), no. 2, 700-712. https://doi.org/10.1137/070693850
  9. S. Sriram, D. Ranganayakulu, Ibrahim Venkat, and K. G. Subramanian, On eccentric graphs of broom graphs, Annals of Pure and Applied Mathematics 5 (2014), 146-152.
  10. B.-L. Yu and T.-Z. Huang, On minimal potentially power-positive sign patterns, Oper. Matrices 6 (2012), no. 1, 159-167.
  11. B.-L. Yu, T.-Z. Huang, J. Cui, and C. H. Deng, Potentially eventually positive star sign patterns, Electron. J. Linear Algebra 31 (2016), 541-548. https://doi.org/10.13001/1081-3810.2963
  12. B.-L. Yu, T.-Z. Huang, C. Hong, and D. D. Wang, Eventual positivity of tridiagonal sign patterns, Linear Multilinear Algebra 62 (2014), no. 7, 853-859. https://doi.org/10.1080/03081087.2013.794232
  13. B.-L. Yu, T.-Z. Huang, J. Luo, and H. B. Hua, Potentially eventually positive double star sign patterns, Appl. Math. Lett. 25 (2012), no. 11, 1619-1624. https://doi.org/10.1016/j.aml.2012.01.023
  14. B.-L. Yu, J. Cui, H. Z.Wang, and X. Y. Xie, Potential eventual positivity of sign patterns with the underlying broom graph, Arab J. Math. Sci. 23 (2017), no. 2, 231-241. https://doi.org/10.1016/j.ajmsc.2016.11.002