A SIMPLE PROOF OF THE IMPROVED JOHNSON BOUND
FOR BINARY CODES

Le Thi Ngoc Giau and Phan Thanh Toan

Abstract. In this paper, we give a simple proof of the improved Johnson bound for \(A(n, d)\), the maximum number of codewords in a binary code of length \(n\) and minimum distance \(d\), given by Mounits, Etzion and Litsyn.

1. The improved Johnson bound for \(A(n, d)\)

Let \(\mathbb{F} = \{0, 1\}\) and let \(n\) be a positive integer. The (Hamming) distance between two vectors \(u\) and \(v\) in \(\mathbb{F}^n\), denoted by \(d(u, v)\), is the number of coordinates where they differ. The (Hamming) weight of a vector \(u\) in \(\mathbb{F}^n\), denoted by \(wt(u)\), is the distance between it and the zero vector. The minimum distance of a subset of \(\mathbb{F}^n\) is the smallest distance between any two different vectors in that subset. An \((n, d)\) code is a subset of \(\mathbb{F}^n\) having minimum distance \(\geq d\). If \(\mathcal{C}\) is an \((n, d)\) code, then an element of \(\mathcal{C}\) is called a codeword and the number of codewords in \(\mathcal{C}\) is called the size of \(\mathcal{C}\), denoted by \(|\mathcal{C}|\). The largest possible size of an \((n, d)\) code is denoted by \(A(n, d)\). An \((n, d, w)\) constant-weight code is an \((n, d)\) code such that every codeword has weight \(w\). Denote by \(A(n, d, w)\) the largest possible size of an \((n, d, w)\) constant-weight code.

The problem of determining the values of \(A(n, d)\) is one of the most fundamental problems in coding theory [15]. The exact value of \(A(n, d)\) is extremely difficult to find even for relatively small values of \(n\). Hence, lower bounds and upper bounds for this function are usually considered. While lower bounds are obtained from explicit code constructions [3, 6, 10, 11, 13, 14, 16, 19, 21], upper bounds involve analytic methods [1, 8, 12, 17, 18, 20, 22]. The following equality is well-known (see for example [15]).

Lemma 1. \(A(n, d) = A(n + 1, d + 1)\) if \(d\) is odd.
One of the basis upper bounds on $A(n,d)$, $d = 2\delta + 1$, is the sphere packing bound or the Hamming bound.

Theorem 2 (Sphere packing bound).

(1) \[A(n, 2\delta + 1) \leq \frac{2^n}{\sum_{i=0}^{\delta} \binom{n}{i}}. \]

The sphere packing bound follows from the fact that the spheres of radius δ centered at the codewords of an $(n, 2\delta + 1)$ code are disjoint, and each of which contains $\sum_{i=0}^{\delta} \binom{n}{i}$ vectors in F^n. Codes that attain the sphere packing bound are called perfect codes. So for a perfect code, the corresponding spheres cover the whole space F^n. In [9], Johnson considered spheres of radius $\delta + 1$ (the spheres may not be disjoint) and improved this sphere packing bound by showing:

Theorem 3 (Johnson bound).

(2) \[A(n, 2\delta + 1) \leq \frac{2^n}{\sum_{i=0}^{\delta} \binom{n}{i}} + \left(\frac{n}{\delta+1} \right) A(n, 2\delta + 2, 2\delta + 1). \]

Since $A(n, 2k, k) = \left\lfloor \frac{n}{k} \right\rfloor$, we have:

Corollary 4.

(3) \[A(n, 2\delta + 1) \leq \frac{2^n}{\sum_{i=0}^{\delta} \binom{n}{i}} + \left(\frac{n}{\delta+1} \right) A(n, 2\delta + 2, 2\delta + 1) \left\lfloor \frac{n}{\delta+1} \right\rfloor. \]

Codes that attain the Johnson bound are called nearly perfect codes. For more information on perfect codes and nearly perfect codes, see [4] and [15].

Besides other good bounds such as linear programming bound [5, 15] and semidefinite programming bound [7, 22], the Johnson bound is still one of the best known upper bounds on $A(n, d)$. In [17], Mounits, Etzion and Litsyn further improved the Johnson bound by showing the following.

Theorem 5 (Improved Johnson bound).

(4) \[A(n, 2\delta + 1) \leq \frac{2^n}{\sum_{i=0}^{\delta} \binom{n}{i}} + \left(\frac{n}{\delta+1} \right) A(n+1, 2\delta + 2, 2\delta + 2). \]

They proved that this bound is always at least as good as the Johnson bound and that for each $\delta \geq 1$, there exist infinitely many values of n for which the bound is better than the Johnson bound.
2. A simple proof of the improved Johnson bound

In this section, we give a simple proof of the improved Johnson bound. In the proof of the improved Johnson bound, Mounits, Etzion and Litsyn considered \(A(n, 2\delta + 1)\) and since \(2\delta + 1\) is odd, an \((n, 2\delta + 1)\) code can have both odd weight codewords and even weight codewords, which makes it more difficult to handle the codewords. In our proof the key difference is that we consider \(A(n + 1, 2\delta + 2)\) instead of \(A(n, 2\delta + 1)\). For this, we restate the improved Johnson bound as below. The advantage of using \(A(n + 1, 2\delta + 2)\) is that every codeword of an \((n + 1, 2\delta + 2)\) code can be assumed to have even weight since \(2\delta + 2\) is even. This makes the code simpler and hence so is the proof of the theorem (as showed below). Our proof is a modification of the proof of the Johnson bound in [15].

Theorem 6 (Improved Johnson bound).

\[
A(n + 1, 2\delta + 2) \leq \frac{2^n}{\sum_{i=0}^{\delta} \binom{n}{i} + \binom{n+1}{\delta+1} - \binom{n+2}{\delta+2} A(n+1, 2\delta+2, 2\delta+2)}.
\]

Proof. (i) Let \(C\) be an \((n + 1, M, 2\delta + 2)\) code, i.e., an \((n + 1, 2\delta + 2)\) code of size \(M\), with \(M = A(n + 1, 2\delta + 2)\) such that \(C\) contains the zero vector and each codeword in \(C\) has even weight. First we consider the case when \(\delta\) is even. Let \(\mathbb{F}_{even}^{n+1}\) be the set of vectors in \(\mathbb{F}^{n+1}\) of even weight and let \(S_i\) be the set of vectors in \(\mathbb{F}_{even}^{n+1}\) at distance \(i\) from \(C\), i.e.,

\[
S_i = \{ u \in \mathbb{F}_{even}^{n+1} \mid d(u, v) = i \ \text{for some} \ v \in C \}.
\]

Thus \(S_0 = C\) and \(S_i\) is empty if \(i\) is odd (since the distance between two vectors of even weight is always even). We have

\[
S_0 \cup S_2 \cup \cdots \cup S_{2\delta} = \mathbb{F}_{even}^{n+1},
\]

for if there were a vector of even weight at distance \(\geq 2\delta + 2\) from \(C\), then we could add it to \(C\) and get a larger code.

(ii) Pick an arbitrary codeword \(P\) and move it to the origin. The codewords of weight \(2\delta + 2\) form a constant-weight code with distance \(\geq 2\delta + 2\), i.e., the number of codewords of weight \(2\delta + 2\) is \(\leq A(n + 1, 2\delta + 2, 2\delta + 2)\).

(iii) Let \(W_{\delta+2}\) be the set of vectors in \(\mathbb{F}^{n+1}\) of (even) weight \(\delta + 2\). Any vector in \(W_{\delta+2}\) belongs to either \(S_\delta\) or \(S_{\delta+2}\). Corresponding to each codeword \(Q\) of weight \(2\delta + 2\), there are \(\binom{2\delta+2}{\delta+2}\) vectors of weight \(\delta + 2\) at distance \(\delta\) from \(Q\). These vectors are in \(W_{\delta+2} \cap S_\delta\) and are all distinct. Therefore,

\[
|W_{\delta+2} \cap S_{\delta+2}| = |W_{\delta+2}| - |W_{\delta+2} \cap S_\delta| \geq \binom{n+1}{\delta+2} - \binom{2\delta+2}{\delta+2} A(n + 1, 2\delta + 2, 2\delta + 2).
\]

(iv) A vector \(R\) in \(W_{\delta+2} \cap S_{\delta+2}\) is at distance \(\delta + 2\) from at most \(A(n + 1, 2\delta + 2, \delta + 2)\) codewords. For move the origin to \(R\) and consider how many
codewords can be at distance $\delta + 2$ from R and have mutual distance $2\delta + 2$.

(v) Now let P vary over all the codewords. For each $i = 0, 2, \ldots, \delta$, we get

$$|S_i| = A(n + 1, 2\delta + 2) \binom{n + 1}{i}$$

$$= A(n + 1, 2\delta + 2) \left[\binom{n}{i - 1} + \binom{n}{i} \right].$$

Also,

$$|S_{\delta+2}| \geq A(n + 1, 2\delta + 2) \frac{\binom{n+1}{\delta+2} - \binom{2\delta+2}{\delta+2}}{A(n + 1, 2\delta + 2, \delta + 2)}.$$

The result then follows since

$$|S_0| + |S_2| + \cdots + |S_\delta| + |S_{\delta+2}| \leq |\mathbb{F}_{even}^{n+1}| = 2^n.$$

The case when δ is odd is proved similarly, where \mathbb{F}_{even}^{n+1} is replaced by \mathbb{F}_{odd}^{n+1}, the set of all vectors in \mathbb{F}^{n+1} of odd weight. □

3. Some examples

In this section, we give examples illustrating that the improved Johnson bound is one of the best upper bounds on $A(n,d)$ and that it is really better then the Johnson bound. We first show known upper bounds on $A(n,4,3)$ and $A(n,4,4)$ (see [15] or [18]), which will be used in the examples.

Theorem 7.

$$A(n,4,3) = \begin{cases} \left\lfloor \frac{n}{3} \right\rfloor - 1 & \text{if } n \equiv 5 \pmod{6}, \\ \left\lfloor \frac{n}{3} \right\rfloor - \frac{2}{3} & \text{if } n \not\equiv 5 \pmod{6}. \end{cases}$$

Theorem 8.

$$A(n,4,4) = \begin{cases} \frac{n(n-1)(n-3)}{24} & \text{if } n \equiv 1 \text{ or } 3 \pmod{6}, \\ \frac{n(n-1)(n-2)}{24} & \text{if } n \equiv 2 \text{ or } 4 \pmod{6}, \\ \frac{n(n^2-3n-6)}{24} & \text{if } n \equiv 0 \pmod{6}, \\ \frac{n^3-4n^2+n-6}{24} & \text{if } n \equiv 5 \pmod{12}, \\ \frac{n^3-4n^2+n-18}{24} & \text{if } n \equiv 11 \pmod{12}. \end{cases}$$

A(n,4,4) \leq \begin{cases} \frac{n^3-4n^2+n-6}{24} & \text{if } n \equiv 5 \pmod{12}, \\ \frac{n^3-4n^2+n-18}{24} & \text{if } n \equiv 11 \pmod{12}. \end{cases}$$
Example 9. Consider \(n = 22 \) and \(\delta = 1 \). By Theorem 7, we have

\[A(22, 4, 3) = 73. \]

The Johnson bound gives

\[
A(22, 3) \leq \frac{2^{22}}{\sum_{i=0}^{22} \binom{22}{i} + \left(\frac{20}{3} \right) A(22, 4, 3) - \binom{20}{3}}
\]

\[
= \frac{2^{22}}{1 + 22 + \frac{21 \cdot 17 \cdot 13}{11}}
\]

\[
= \frac{46137344}{265}
\]

\[< 174104. \]

Hence,

\[A(23, 4) = A(22, 3) \leq 174103. \]

On the other hand, by Theorems 7 and 8, we have

\[A(23, 4, 3) = 83 \]

and

\[A(23, 4, 4) \leq 419. \]

In fact, \(A(23, 4, 4) = 419 \) (see [2]) but this equality is not necessary in evaluating the upper bound. The improved Johnson bound gives

\[
A(23, 4) \leq \frac{2^{22}}{\sum_{i=0}^{22} \binom{22}{i} + \left(\frac{20}{3} \right) - \binom{20}{3} A(23, 4, 3) - \binom{20}{3} A(23, 4, 3)}
\]

\[
= \frac{2^{22}}{1 + 22 + \frac{21 \cdot 17 \cdot 13}{11} - \frac{3 \cdot 419}{83}}
\]

\[
= \frac{87031808}{501}
\]

\[< 173717. \]

Therefore,

\[A(23, 4) \leq 173716 < 174103. \]

The best known upper bound of \(A(23, 4) \) is

\[A(23, 4) \leq 172361, \]

which is from [18].

Example 10. Consider \(n = 23 \) and \(\delta = 1 \). By Theorems 7 and 8, we have

\[A(n + 1, 2\delta + 2, \delta + 2) = A(24, 4, 3) = 88 \]
and

\[(24) \quad A(n + 1, 2\delta + 2, 2\delta + 2) = A(24, 4, 4) = 498.\]

The improved Johnson bound gives
\[
A(24, 4) \leq \frac{2^{23}}{\sum_{i=0}^{23} \binom{23}{i} + \binom{24}{3} - \binom{4}{3}} A(24, 3, 4)
\]
\[
= \frac{2^{23}}{1 + 23 + \frac{2924 - 4 \cdot 498}{88}}
\]
\[
= \frac{23068672}{67}
\]
\[(25) \quad < 344309.\]

Therefore,

\[(26) \quad A(24, 4) \leq 344308.\]

The upper bound \(A(24, 4) \leq 344308\) is the best known upper bound for \(A(24, 4)\) up to now.

Acknowledgement. The authors thank the reviewer for his/her comments and suggestions to improve the presentation of the paper.

References

Le Thi Ngoc Giau
Faculty of Mathematics and Statistics
Ton Duc Thang University
Ho Chi Minh City, Vietnam
Email address: lethingocgiau@tdt.edu.vn

Phan Thanh Toan
Fractional Calculus, Optimization and Algebra Research Group
Faculty of Mathematics and Statistics
Ton Duc Thang University
Ho Chi Minh City, Vietnam
Email address: phanthanthoan@tdt.edu.vn