DOI QR코드

DOI QR Code

ON THE INTERSECTION OF k-FIBONACCI AND PELL NUMBERS

  • Bravo, Jhon J. (Departamento de Matematicas Universidad del Cauca) ;
  • Gomez, Carlos A. (Departamento de Matematicas Universidad del Valle) ;
  • Herrera, Jose L. (Departamento de Matematicas Universidad del Cauca)
  • Received : 2018.04.30
  • Accepted : 2018.10.29
  • Published : 2019.03.31

Abstract

In this paper, by using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and $Peth{\ddot{o}}$, we find all generalized Fibonacci numbers which are Pell numbers. This paper continues a previous work that searched for Pell numbers in the Fibonacci sequence.

Keywords

References

  1. M. A. Alekseyev, On the intersections of Fibonacci, Pell, and Lucas numbers, Integers 11 (2011), no. 3, 239-259. https://doi.org/10.1515/INTEG.2011.021
  2. A. Baker and H. Davenport, The equations $3x^2$ - 2 = $y^2$ and $8x^2$ - 7 = $z^2$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. https://doi.org/10.1093/qmath/20.1.129
  3. M. Bicknell, A primer on the Pell sequence and related sequences, Fibonacci Quart. 13 (1975), no. 4, 345-349.
  4. E. F. Bravo, J. J. Bravo, and F. Luca, Coincidences in generalized Lucas sequences, Fibonacci Quart. 52 (2014), no. 4, 296-306.
  5. J. J. Bravo, C. A. Gomez, and F. Luca, Powers of two as sums of two k-Fibonacci numbers, Miskolc Math. Notes 17 (2016), no. 1, 85-100. https://doi.org/10.18514/MMN.2016.1505
  6. J. J. Bravo and F. Luca, Powers of two in generalized Fibonacci sequences, Rev. Colombiana Mat. 46 (2012), no. 1, 67-79.
  7. J. J. Bravo and F. Luca, On a conjecture about repdigits in k-generalized Fibonacci sequences, Publ. Math. Debrecen 82 (2013), no. 3-4, 623-639. https://doi.org/10.5486/PMD.2013.5390
  8. J. J. Bravo and F. Luca, Coincidences in generalized Fibonacci sequences, J. Number Theory 133 (2013), no. 6, 2121-2137. https://doi.org/10.1016/j.jnt.2012.11.006
  9. J. J. Bravo and F. Luca, On the largest prime factor of the k-Fibonacci numbers, Int. J. Number Theory 9 (2013), no. 5, 1351-1366. https://doi.org/10.1142/S1793042113500309
  10. J. H. E. Cohn, Perfect Pell powers, Glasgow Math. J. 38 (1996), no. 1, 19-20. https://doi.org/10.1017/S0017089500031207
  11. G. P. B. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci numbers, J. Integer Seq. 17 (2014), no. 4, Article 14.4.7, 9 pp.
  12. A. Dujella and A. Petho, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291-306. https://doi.org/10.1093/qmathj/49.3.291
  13. C. A. Gomez and F. Luca, On the largest prime factor of the ratio of two generalized Fibonacci numbers, J. Number Theory 152 (2015), 182-203. https://doi.org/10.1016/j.jnt.2014.11.017
  14. A. F. Horadam, Applications of modified Pell numbers to representations, Ulam Quart. 3 (1995), no. 1, 34-53.
  15. F. T. Howard and C. Cooper, Some identities for r-Fibonacci numbers, Fibonacci Quart. 49 (2011), no. 3, 231-242.
  16. L. K. Hua and Y.Wang, Applications of number theory to numerical analysis, translated from the Chinese, Springer-Verlag, Berlin, 1981.
  17. E. Kilic and D. Tasci, The linear algebra of the Pell matrix, Bol. Soc. Mat. Mexicana (3) 11 (2005), no. 2, 163-174.
  18. T. Koshy, Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001.
  19. W. Ljunggren, Zur Theorie der Gleichung $x^2$ +1 = $Dy^4$, Avh. Norske Vid. Akad. Oslo. I. 1942 (1942), no. 5, 27 pp.
  20. F. Luca, Fibonacci and Lucas numbers with only one distinct digit, Portugal. Math. 57 (2000), no. 2, 243-254.
  21. D. Marques, The proof of a conjecture concerning the intersection of k-generalized Fibonacci sequences, Bull. Braz. Math. Soc. (N.S.) 44 (2013), no. 3, 455-468. https://doi.org/10.1007/s00574-013-0021-y
  22. D. Marques, On k-generalized Fibonacci numbers with only one distinct digit, Util. Math. 98 (2015), 23-31.
  23. E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II, Izv. Math. 64 (2000), no. 6, 1217-1269; translated from Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125-180. https://doi.org/10.1070/IM2000v064n06ABEH000314
  24. M. Mignotte, Intersection des images de certaines suites recurrentes lineaires, Theoret. Comput. Sci. 7 (1978), no. 1, 117-122. https://doi.org/10.1016/0304-3975(78)90043-9
  25. T. D. Noe and J. Vos Post, Primes in Fibonacci n-step and Lucas n-step sequences, J. Integer Seq. 8 (2005), no. 4, Article 05.4.4, 12 pp.
  26. A. Petho, The Pell sequence contains only trivial perfect powers, in Sets, graphs and numbers (Budapest, 1991), 561-568, Colloq. Math. Soc. Janos Bolyai, 60, North-Holland, Amsterdam, 1992.
  27. D. A. Wolfram, Solving generalized Fibonacci recurrences, Fibonacci Quart. 36 (1998), no. 2, 129-145.