DOI QR코드

DOI QR Code

The Neoproterozoic and Cretaceous Tectonic Evolution and Important Geoheritages in the Gogunsan Archipelago

고군산군도 지역의 신원생대 및 백악기 지구조 진화과정과 중요 지질유산

  • Oh, Chang Whan (Department of Earth and Environmental Sciences, Jeonbuk National University) ;
  • Kim, Won Jeong (Department of Earth and Environmental Sciences, Jeonbuk National University) ;
  • Lee, Seung Hwan (Department of Earth and Environmental Sciences, Jeonbuk National University) ;
  • Lee, Bo Young (Department of Earth and Environmental Sciences, Jeonbuk National University) ;
  • Kim, Jin Seok (Department of Earth and Environmental Sciences, Jeonbuk National University) ;
  • Choi, Seung Hyun (National Ecology Division, Jeollabuk-do Provincial Government)
  • 오창환 (전북대학교 지구환경과학과) ;
  • 김원정 (전북대학교 지구환경과학과) ;
  • 이승환 (전북대학교 지구환경과학과) ;
  • 이보영 (전북대학교 지구환경과학과) ;
  • 김진석 (전북대학교 지구환경과학과) ;
  • 최승현 (전라북도 자연생태과)
  • Received : 2019.11.12
  • Accepted : 2019.12.21
  • Published : 2019.12.31

Abstract

The Gogunsan Archipelago is composed of two island groups; the first group includes Mal-do, Myeong-do, Gwangdae-do, and Bangchuk-do islands consisting of Neoproterozoic rocks, and the second group includes Yami-do, Sinsi-do, Muneo-do, Jangja-do, and Seonyu-do islands consisting of Cretaceous rocks. The first group mainly consists of the Bangchuk formation which can be divided into two layers; the lower layer was more deformed than the upper layer. The former was intruded by mafic and felsic volcanic rocks formed in the volcanic arc tectonic setting 930-890 Ma and the latter was deposited ca. 825-800 Ma. In these islands, large scale folds with east-west fold axes were beautifully formed; the Maldo island fold was designated as natural monument and large scale beautiful chevron fold was developed on the Gwangdae-do island. In addition, there are unique zebra-shaped outcrop formed by a mixing of basic and acidic magma and Independent Gate shaped outcrop formed by coastal erosion. On the other hand, the Yami-do, Sinsi-do, Muneo-do, Jangja-do and Seonyu-do islands consist of 92-91Ma Cretaceous volcanic rocks and, in Sinsi-do island, the Nanshan formation deposited ca. 92 Ma. These Cretaceous volcanic rocks formed by melting of the continental crust by the heat supplied from the uplifting mantle due to the extension caused by a retreat of subducting ocean slab. Yami-do and Sinsi-do islands are composed of rhyolite. In Yami-do island, bands with vertical joint formed by cooling of the bottom part of the lava, are shown. In Sinsi-do island, large-scale vertical joints formed by cooling of lava flow, were developed. The Jangja-bong of Jangja-do island and Mangju-bong of Seonyu-do island are composed of brecciated rhyolite and formed a ring shaped archipelago contributing to the development of marine culture by providing natural harbor condition. They also provide beautiful views including 'Seonyu 8 views' along with other islands. As mentioned above, the Gogunsan archipelago is rich in geoheritages and associated cultural and historical resources, making it worth as a National Geopark.

고군산군도는 신원생대 암석으로 이루어진 말도-명도-광대도-방축도와 백악기 암석으로 이루어진 야미도-신시도-무녀도-장자도-선유도로 구성되어 있다. 말도-명도-광대도-방축도는 930-890 Ma 경에 화산호 환경에 형성된 염기성화성암과 산성화성암에 의해 관입된 하부 방축도층과 825-800 Ma 경에 퇴적된 상부 방축도층으로 구성되어 있다. 이들 섬들에는 동서 방향의 습곡축을 갖는 대규모의 습곡구조가 아름답게 형성되어 있고 그중 말도의 습곡구조는 천연기념물로 지정되어 있으며 광대도에는 대규모의 아름다운 셰브론 습곡이 발달하여 장관을 이루고 있다. 이 외에도 염기성화성암과 산성화성암이 동시에 관입하여 만든 특이한 얼룩말 무늬 바위와 해안 침식에 의해 형성된 독립문 형태를 보이는 기암이 나타난다. 이에 반해 야미도-신시도-무녀도-장자도-선유도는 주로 92-91 Ma 경에 형성된 백악기 화산암으로 구성되어 있으며 신시도에는 92 Ma 경에 퇴적된 난산층이 나타난다. 이들 화산암들은 섭입하는 해양판의 후퇴가 야기한 인장력에 의해 상승한 맨틀이 공급한 열에 의해 대륙지각이 용융되어 형성되었다. 야미도와 신시도는 유문암으로 구성되어 있으며 야미도에는 여러 번에 걸친 용암 분출 시 용암 하부가 냉각되어 형성된 띠 형태의 수직 절리대가 나타나며 신시도에는 분출된 용암이 흐르면서 식어서 형성된 대규모 수직 절리대가 발달되어 있다. 그리고 장자도의 대장봉과 선유도의 망주봉은 유문각력암으로 구성되어 있으며 환형의 군도를 형성함으로써 자연 항구 조건을 제공하여 이곳의 해양문화가 발달하는데 큰 공헌을 하였고 다른 섬들과 함께 선유 8경을 포함한 아름다운 전경을 제공하고 있다. 고군산군도는 위에 언급한 바와 같이 많은 가치 있는 지질유산과 함께 그에 연관된 문화, 역사자료를 풍부하게 보유하고 있어 국가지질공원으로 충분한 가치가 있다.

Keywords

References

  1. Ames, L., Gaozhi, Z. and Baocheng, X., 1996, Geochronology and isotopic character of ultrahigh‐pressure metamorphism with implications for collision of the Sino‐Korean and Yangtze cratons, central China. Tectonics, 15(2), 472-489. https://doi.org/10.1029/95TC02552
  2. Chen, C.-H., Lin, W., Lu, H-Y., Lee, C.-Y., Tien, J.-L. and Lai, Y-H., 2000, Cretaceous fractionated I-type granitoids and metaluminous A-type granites in SE China: the Late Yanshanian post-orogenic magmatism. Transactions of the Royal Society of Edinburgh: Earth Sciences. 91, 195-205. https://doi.org/10.1017/S0263593300007379
  3. Chen, R. and Zhou, J., 1995, Information of Crust-mantle interpretation implied in Early Cretaceous composite lavas and dikes from eastern Zhejiang. Geological Review, 45, 784-795.
  4. Choi, P. and Hwang, J.H., 2013, Geological report of the Gunsan, Buan, Bangchukdo, Jangjado sheets (1:50,000). Korea Institute of Geoscience and Mineral Resources, 86p (in Korean with English abstract).
  5. Chough, S.K. and Sohn, Y.K., 2010, Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth-Science Reviews, 101. 225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  6. Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979, The interpretation of igneous rocks. George, Allen and Union, London.
  7. Eby, G.N., 1992, Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20, 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
  8. Harris, N.B.W., Pearce, J.A. and Tindle, A.G., 1986, Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19, 67-81.
  9. He, Z.-Y. and Xu, X.-S., 2012, Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to the geodynamics of paleo-Pacific plate subduction. Chemical Geology, 328, 208-221. https://doi.org/10.1016/j.chemgeo.2011.09.014
  10. Heo, C.H. and Choi, S,H., 2007, A Study on the Development of Geological and Geomorphological Landscape Resources to Promote Tourism Geology: A Case Study. in Taean Seashore National Park. Journal of The Korean Earth Science Society, 28, 75-86. https://doi.org/10.5467/JKESS.2007.28.1.075
  11. Hwang, S.K. and Kim, S.W., 1994, Petrology of Cretaceous Volcanic Rocks in the Milyang - Yangsan Area, Korea: Petrotectonic Setting. Journal of Geological Society of Korea, 30, 229-241.
  12. Jeon, Y.G., 2010, Geotourism in Korea. Journal Of The Korean Geomorphological Association, 17, 53-69.
  13. Kang, I.-J., 2018, The islands in Gunsan. Gunsan Modern History Museum, Gunsan city, 57-218.
  14. Kim, C.H., 2009, Geopark's Activities and Geological Meanings in Korea. Journal of the Korean Geomorphological Association, 16, 57-66.
  15. Kim, K.H. and Lee, J.S., 1993, Petrochemical Studies of the Cretaceous Volcanic Rocks from the Kyeongsang Sedimentary Basin. Journal of Geological Society of Korea, 29, 84-96.
  16. Kim, M.G. and Lee, Y.L., 2018, Pyeongan Supergroup (upper Paleozoic-Lower Triassic) in the Okcheon Belt, Korea: A review of stratigraphy and detrial zircon provenance, and its implications for the tectonic setting of the eastern Sino-Korean Block. Earth-Science Reviews. 185, 1186.
  17. Kim, M.J., Park, K.H., Park, Y.J. and Choi, J.E., 2011, The SHRIMP U-Pb age of Gyemyeongsan Formation in Chungju area, Okcheon metamorphic belt(abstract). Preceedings of the Annual Joint Conference, Mineralogical Society of Korea and Petrological Society of Korea, 51.
  18. Kim, M.J., Park, J.-W., Lee, T.-H., Song, Y.-S. and Park, K.-H., 2016, LA-MC-ICPMS U-Pb Ages of the Detrital Zircons from the Baengnyeong Group: Implications of the Dominance of the Mesoproteroaoic Zircons. Economic and Environmental Geology, 49(6), 433-444. https://doi.org/10.9719/EEG.2016.49.6.433
  19. Kim, S.W., Oh, C.W., Ryu, I.-C., Wiliams, I.S., Sajeev, K. Santoch, M. and Rajesh, V.J., 2006, Neoproterozoic Bimodal Volcanism in the Okcheon Belt, South Korea, and Its Comparison with the Nanhua Rift, South China: Implications for rifting in Rodinia. The journal of Geology, 114, 717-733. https://doi.org/10.1086/507616
  20. Kim, S.W., Kee, W.-S., Lee, S.R., Santosh, M. and Kwon, S., 2013, Neoproterozoic plutonic rocks from the western Gyeonggi massif, South Korea: Implications for the amalgmatin and break-up of the Rodinia supercontinent. Precambrian Research, 227, 349-367. https://doi.org/10.1016/j.precamres.2012.01.014
  21. Kim, S.W., Kwon, S., Park, S.-I., Lee, C., Cho, D.-L., Lee, H.-J., Ko, K. and Kim, S.J., 2016, SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninusula: A new tectonic model of the Cretaceous Korean Peninsula. Lithos, 262, 88-106. https://doi.org/10.1016/j.lithos.2016.06.027
  22. Kim, S.W., Cho, D.-L., Lee, S.-B., Kwon, S., Park, S.-I., Santosh, M. and Kee, W.-S., 2018, Mesoproterozoic magamtic suites from the central-western Korean Peninsula: Imprints of Columbia distribution in East Asia. Precambrian Research, 306, 155-753. https://doi.org/10.1016/j.precamres.2017.12.038
  23. Kim, W.J., Oh, C.W., Kim, J.S., Lee, S.H. and Jeong J.W., 2019, The tectonic setting and age of the Neoproterozoic sedimentary and igneous rocks in the Gogunsan islands (abstract). The Annual Meeting of the Geological Society of Korea, 425.
  24. Koh, S.-M., Kim, J.-H. and Park, K.-H., 2005, Neoproterozoic A-type Volcanic Activity within the Okcheon Metamorphic Belt. The Journal of the Petrological Society of Korea, 14, 157-168.
  25. Kwon, S.-K., Choi, S.H. and Lee, D.-C., 2013, Sr-Nd-Hf-Pb isotope geochemistry of basaltic rocks from the Cretaceous Gyeongsang Basin, South Korea: Implication for basin formation. Journal of Asian Earth Sciences, 73, 504-519. https://doi.org/10.1016/j.jseaes.2013.05.011
  26. Lapierre, H., Jahn, B.M., Charvet, J. and Yu, Y.W., 1997, Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang province and their relationship with the tectonic activity in southeastern China. Tectonophysics. 274, 321-338. https://doi.org/10.1016/S0040-1951(97)00009-7
  27. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B., 1986, A Chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750. https://doi.org/10.1093/petrology/27.3.745
  28. Lee, B.C., Oh, C.W., Kim, T.S. and Yi, K., 2016, The metamorphic evolution from ultrahigh-temperature to amphibolite facies metamorphism in the Odesan ara after the collision between the North and South China Cratons in the Korean Peninsula. Lithos, 256-257, 109-131. https://doi.org/10.1016/j.lithos.2016.03.019
  29. Lee, B.Y., 2017, The tectonic history of the Imjingang belt and Dangjin-Haemi area from Neoproterozoic to Triassic. Chonbuk Univ. master thesis.
  30. Lee, B.Y. and Oh, C.W., 2019, The Neoproterozoic igneous activities in the Gyeonggi Massif of Korean peninsula and its implication for the tectonics of northeast Asia(abstract). The Annual Meeting of the Geological Society of Korea, 163.
  31. Lee, K.S., Chang, H.W. and Park, K.H., 1998, Neoproterozoic bimodal volcanism in the central Ogcheon belt, Korea: age and tectonic implication. Precambrian Research. 89, 47-57. https://doi.org/10.1016/S0301-9268(97)00077-6
  32. Lee, S., Sagong, H., Choi, J., Moon, Y., Lee, M., Kim, E., Choi, D., Lee, K. and Cho, H., 2009, Concepts and Implications of UNESCO Geoparks. Policy report 2009-8, Korea Environment Institute, 139p.
  33. Lee, S.H., Oh, C.W. and Park J.W., 2019, The age and geochemistry of the Cretaceous volcanic rocks in the Jinan Basin(abstract). The Annual Meeting of the Geological Society of Korea, 164.
  34. Lee, S.-M., Kim, S.-U. and Jin, M.-S., 1987, Igneous activities of the Cretaceous to the Early Tertiary and their tectonic implications in South Korea. Journal of Geological Society of Korea, 23, 338-359.
  35. Lee, S.R., Cho, M., Cheong, C.-S., Kim, H. and Wingate, M.T., 2003, Age, geochemistry, and tectonic significance of Neoproterozoic alkaline granitoids in the northwestern margin of the Gyeonggi Massif, South Korea. Precambrian Research, 122, 297-310. https://doi.org/10.1016/S0301-9268(02)00216-4
  36. Li, S.Q., Hegner, E., Yang, Y.Z., Wu, J.D. and Chen, F., 2014, Age constraints on late Mesozoic lithospheric extension and origin of bimodal volcanic rocks from the Hailar basin, NE China. Lithos, 190-191, 204-219. https://doi.org/10.1016/j.lithos.2013.12.009
  37. Li, X., 2000, Cretaceous magmatism and lithospheric extension in Southeast China. Journal of Asian Earth Sciences, 18, 293-305. https://doi.org/10.1016/S1367-9120(99)00060-7
  38. Li, X. H., Li, Z. X., Sinclair, J. A., Li, W. X. and Carter, G., 2006, Revisiting the "Yanbian Terrane": implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Research, 151(1-2), 14-30. https://doi.org/10.1016/j.precamres.2006.07.009
  39. Ling, W., Gao, S., Zhang, B., Li, H., Liu, Y. and Cheng, J., 2003, Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Research, 122(1-4), 111-140. https://doi.org/10.1016/S0301-9268(02)00222-X
  40. Liu, L., Xu, X. and Zou, H., 2012, Episodic eruptions of the Late Mesozoic volcanic sequences in southeastern Zhejiang, SE China: Petrogenesis and implications for the geodynamics of paleo-Pacific subduction. Lithos, 154, 166-180. https://doi.org/10.1016/j.lithos.2012.07.002
  41. Liu, L., Xu, X. and Xia, Y., 2014, Cretaceous Pacific plate movement beneath SE China: Evidence from episodic volcanism and related intrusions. Tectonophysics, 614, 170-184. https://doi.org/10.1016/j.tecto.2013.12.007
  42. Liu, L., Xu, X. and Xia, Y., 2016, Asynchronizing paleo-Pacific slab rollback beneath SE China: Insights from the episodic Late Mesozoic volcanism. Gondwana Research, 37, 397-407. https://doi.org/10.1016/j.gr.2015.09.009
  43. Oh, C.W., Kim, S.W., Choi, S.-G., Zhai, M., Guo, J. and Sajeev, K., 2005, The first finding of Eclogite Facies Metamorphic Event in south Korea and Its Correlation with the Dabie-Sulu Collsion Belt in China. The journal of Geology, 113, 2.
  44. Oh, C.W. and Kusky, T., 2007, The Late Permian to Triassic Hongseong-Odesan Collision Belt in South Korea, and Its Tectonic Correlation with China and Japan. International geology review, 49, 636-657. https://doi.org/10.2747/0020-6814.49.7.636
  45. Oh, C.W., Choi, S.-G., Seo, J., Rajesh, V.J., Lee, J.H., Zhai, M. and Peng, P., 2009, Neoproterozoic tectonic evolution of the Hongseong area, southwestern Gyeonggi Massif, South Korea; implication for the tectonic evolution of Northeast Asia. Gondwana Research, 16, 272-284. https://doi.org/10.1016/j.gr.2009.04.001
  46. Oh, C.W., Lee, B.C., Lee, S.W., Kim, M.D., Lee, B.Y. and Choi, S.H., 2016. The tectonic evolution and important geoheritages in the Jinan and Muju area, Jeallabuk-do. Journal of the Geological Society of Korea, 52, 709-738. https://doi.org/10.14770/jgsk.2016.52.5.709
  47. Oh, C.W., Lee, J.Y., Yengkhom, K.S., Lee, B.C. and Ryu, H.I., 2018, Neoproterozoic igneous activity and permoTriassic metamorphism in the Gapyeong area within the Gyeonggi Massif, South Korea, and their implication for the tectonics of northeastern Asia. Lithos, 322, 1-19. https://doi.org/10.1016/j.lithos.2018.09.032
  48. Oh, C.W., Wang, X., Lim, C., Lee, B.C., Lee, S.H., Lee, B.Y., Kim, J.S., Kim, W.J. and Jeong, J.W., 2019, Gogunsan Islands Geopark Application Form, Geological Heritage Report. 98p.
  49. Pearce, J.A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
  50. Pearce, J.A., Harris, N.B.W. and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
  51. Peccerillo, A. and Taylor, S.R., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks in the Kastamonu area, Northern Turkey. Contribution to Mineralogy and Petrology, 58, 63-81. https://doi.org/10.1007/BF00384745
  52. Peng, P., Bleeker, W., Ernst, R. E., Söderlund, U., and McNicoll, V., 2011a, U-Pb baddeleyite ages, distribution and geochemistry of 925 Ma mafic dykes and 900 Ma sills in the North China craton: evidence for a Neoproterozoic mantle plume. Lithos, 127(1-2), 210-221. https://doi.org/10.1016/j.lithos.2011.08.018
  53. Peng, P., Zhai, M.-G., Li, Q., Wu, F., Hou, Q., Li, Z., Li, T. and Zhang, Y., 2011b, Neoproterozoic (-900 Ma) Sariwon sills in North Korea: Geochronology geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research, 20, 243-254. https://doi.org/10.1016/j.gr.2010.12.011
  54. Park, K.-H., Kim, M.J., Yang, Y.S. and Cho, K.O., 2010, Age distribution of the Jurassic Plutions in Korean Peninsula. Journal of the Petrological Society of Korea, 19, 269-281.
  55. Sagong, H., Kwon, S.-T., Cheong, C.-S. and Choi, S.H., 2001, Geochemical and isotopic studies of the Cretaceous igneous rocks in the Yeongdong Basin, Korea: Implication for the origin of magmatism in pull-apart basin. Geosciences Journal, 5, 191-201. https://doi.org/10.1007/BF02910303
  56. Seo, J., Choi, S.G. and Oh, C.W., 2010, Petrology, geochemistry, and geochronology of the post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research. 18(2-3), 479-496. https://doi.org/10.1016/j.gr.2009.12.009
  57. Shervais, J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters. 59, 101-118. https://doi.org/10.1016/0012-821X(82)90120-0
  58. Steiger, R. and Jäger, E., 1977, Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and planetary science letters, 36(3), 359-362. https://doi.org/10.1016/0012-821X(77)90060-7
  59. Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematic of oceanic basalt: Implications formantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. The Geological Society of London, 313-345.
  60. We, S.M., Park, S.M., Choi, S.G. and Ryu, I.C., 2005, Geochemical study of the Cretaceous granitic rocks in southwestern part of the Korean Peninsula. The Korean Society of Economic and Environmental Geology, 38, 113-127.
  61. Whalen, J.B., Currie, K.L. and Chappell, B.W., 1987, A-type granites: geochemical characteristics, discrimination and petrogenesis. Contribution to Mineralogy and Petrology, 956, 407-419.
  62. Xu, J., Zhu, G., Tong, W.X., Gui, K.R. and Liu, Q., 1987, Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear wywtem to the northwest of the Pacific Ocean. Tectonophysics, 134, 273-310. https://doi.org/10.1016/0040-1951(87)90342-8
  63. Ye, M. F., Li, X. H., Li, W. X., Liu, Y. and Li, Z. X., 2007, SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research, 12(1-2), 144-156. https://doi.org/10.1016/j.gr.2006.09.001
  64. Yi, K., Cheong, C.-S., Kim, J., Kim, N., Jeong, Y.-J. and Cho, M., 2012, Late Paleozoic to Early Mesozoic arc-related magmatism in southeastern Korea: SHRIMP zircon geochronology and geochemistry. Lithos, 153, 129-141. https://doi.org/10.1016/j.lithos.2012.02.007
  65. Yoon, K.-H. and Kim, N.-J., 2015, The role and Meaning of Geotourism from the Perspective of National Geoparks Appointment. Journal of Tourism Studies, 27, 53-82.
  66. You, G.J., 2016, A study on the status and conservation of the Korea National Geopark. Journal of Photo Geography, 26, 39-56.
  67. Yun, S.H., Kim, J.S. and Kim, Y.L., 1994, Petrology of the Cretaceous Volcanic Rocks in Pusan Area, Korea (II): Petrogenesis and Tectonic Setting. Journal of Korean Earth Science Society, 5, 356-365.
  68. Yun, S.H., Lee, J.D., Lee, S.W., Koh, J.S. and Seo, Y.J., 1997, Petrology of the volcanic rocks in Geoje island, South Korea. Journal of Petrological Society of Korea, 6, 1-18.
  69. Zhang, Y.-B., Zhai, M., Hou, Q.-L., Li, T.-S., Liu, F. and Hu, B., 2012, Late Cretaceous volcanic rocks and associated granites in Gyeongsang Basin, SE Korea: Their chronological ages and tectonic implications for cratonic destruction of the North China Craton. Journal of Asian Earth Sciences, 47, 252-264. https://doi.org/10.1016/j.jseaes.2011.12.011
  70. Zhou, X., Sun, T., Shen, W., Shu, L. and Niu, Y., 2006, Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29, 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
  71. Zhou, Y., Liang, X., Kroner, A., Cai, Y., Shao, T., Wen, S., Jiang, Y., Fu, J., Wang, C. and Dong, C., 2015, Late Cretaceous lithospheric extension in SE China: Constraints from volcanic rocks in Hainan Island. Lithos, 232, 100-110. https://doi.org/10.1016/j.lithos.2015.06.028