DOI QR코드

DOI QR Code

Combined Lowering Effects of Rosuvastatin and L. acidophilus on Cholesterol Levels in Rat

  • Wang, Lijun (Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University) ;
  • Zhou, Baihua (Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University) ;
  • Zhou, Xue (Department of Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital) ;
  • Wang, Yang (Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University) ;
  • Wang, Hongwei (Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University) ;
  • Jia, Shengying (Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University) ;
  • Zhang, Zhipeng (Department of Cardiology, Affiliated Zhongshan Hospital, Dalian University) ;
  • Chu, Chao (Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University) ;
  • Mu, Jianjun (Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University)
  • Received : 2018.06.04
  • Accepted : 2018.10.30
  • Published : 2019.03.28

Abstract

Statins are a class of lipid-lowering drugs commonly used in the prevention of cardiovascular diseases. However, statin therapy presents many limitations, which have led to an increased interest in non-drug therapies, such as probiotics, to improve blood cholesterol levels. Indeed, probiotic strains such as Lactobacillus acidophilus have been found to improve blood lipid profiles, especially in reducing total cholesterol and LDL-C levels. In this study, we established a high-cholesterol rat model and studied the effect of Lactobacillus acidophilus administration alone or in combination with rosuvastatin. We were able to show that Lactobacillus exerts a cholesterol-lowering effect. Additionally, we observed that when administered together, rosuvastin and Lactobacillus exert a combined cholesterol-lowering effect. Altogether, our data advocate for the possibility of establishing probiotics as non-drug supplements for the treatment of hypercholesterolemia.

Keywords

References

  1. Townsend N, Nichols M, Scarborough P, Rayner M. 2015. Cardiovascular disease in Europe 2015: epidemiological update. Eur. Heart J. 36: 2673-2674.
  2. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, et al. 2016. [2016 ESC/EAS Guidelines for the Management of Dyslipidaemias]. Kardiol. Pol. 74: 1234-1318. https://doi.org/10.5603/KP.2016.0157
  3. Stone NJ, Robinson JG, Lichtenstein A. 2014. N. Engl. J. Med. 370: 1957. https://doi.org/10.1056/NEJMc1403438
  4. Cosin Sales J, Fuentes Jimenez FJ, Mantilla Morato T, Ruiz E, Becerra V, Aceituno S, et al. 2015. [Cost-effectiveness of rosuvastatin versus simvastatin, atorvastatin and pitavastatin in patients with high and very high cardiovascular risk in Spain]. Clin. Investig. Arterioscler. 27: 228-238.
  5. Holecki M, Handzlik-Orlik G, Almgren-Rachtan A, Dulawa J, Chudek J. 2017. The decreased achievement of therapeutic goal in lipid lowering therapy in obese and diabetic patients in Poland. Pharmacol. Rep. 69: 6-12. https://doi.org/10.1016/j.pharep.2016.09.009
  6. Kotseva K, Wood D, De Bacquer D, De Backer G, Ryden L, Jennings C, et al. 2016. EUROASPIRE IV: a european society of cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 european countries. Eur. J. Prev. Cardiol. 23: 636-648. https://doi.org/10.1177/2047487315569401
  7. Valerio MG, Velayati A, Jain D, Aronow WS. 2016. Promising new therapies for the treatment of hypercholesterolemia. Expert. Opin. Biol. Ther. 16: 609-618. https://doi.org/10.1517/14712598.2016.1148136
  8. Wang P. 2011. Statin dose in Asians: is pharmacogenetics relevant? Pharmacogenomics 12: 1605-1615. https://doi.org/10.2217/pgs.11.98
  9. Yasuda SU, Zhang L, Huang SM. 2008. The role of ethnicity in variability in response to drugs: focus on clinical pharmacology studies. Clin. Pharmacol. Ther. 84: 417-423. https://doi.org/10.1038/clpt.2008.141
  10. Cardiometabolic Risk Working Group: Executive C, Leiter LA, Fitchett DH, Gilbert RE, Gupta M, Mancini GB, et al. 2011. Cardiometabolic risk in Canada: a detailed analysis and position paper by the cardiometabolic risk working group. Can. J. Cardiol. 27: e1-e33. https://doi.org/10.1016/j.cjca.2010.12.054
  11. Guglielmi V, Bellia A, Pecchioli S, Della-Morte D, Parretti D, Cricelli I, et al. 2017. Effectiveness of adherence to lipid lowering therapy on LDL-cholesterol in patients with very high cardiovascular risk: a real-world evidence study in primary care. Atherosclerosis 263: 36-41. https://doi.org/10.1016/j.atherosclerosis.2017.05.018
  12. Chodick G, Shalev V, Gerber Y, Heymann AD, Silber H, Simah V, et al. 2008. Long-term persistence with statin treatment in a not-for-profit health maintenance organization: a population-based retrospective cohort study in Israel. Clin. Ther. 30: 2167-2179. https://doi.org/10.1016/j.clinthera.2008.11.012
  13. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, et al. 2014. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American college of cardiology/American heart association task force on practice guidelines. J. Am. Coll. Cardiol. 63: 2960-2984. https://doi.org/10.1016/j.jacc.2013.11.003
  14. Dattilo AM, Kris-Etherton PM. 1992. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am. J. Clin. Nutr. 56: 320-328. https://doi.org/10.1093/ajcn/56.2.320
  15. Huffman KM, Hawk VH, Henes ST, Ocampo CI, Orenduff MC, Slentz CA, et al. 2012. Exercise effects on lipids in persons with varying dietary patterns-does diet matter if they exercise? Responses in studies of a targeted risk reduction intervention through defined exercise I. Am. Heart J. 164: 117-124. https://doi.org/10.1016/j.ahj.2012.04.014
  16. Kelley GA, Kelley KS. 2009. Impact of progressive resistance training on lipids and lipoproteins in adults: another look at a meta-analysis using prediction intervals. Prev. Med. 49: 473-475. https://doi.org/10.1016/j.ypmed.2009.09.018
  17. Shaw K, Gennat H, O'Rourke P, Del Mar C. 2006. Exercise for overweight or obesity. Cochrane Database Syst. Rev. 4: CD003817.
  18. Brown L, Rosner B, Willett WW, Sacks FM. 1999. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am. J. Clin. Nutr. 69: 30-42. https://doi.org/10.1093/ajcn/69.1.30
  19. Gylling H, Plat J, Turley S, Ginsberg HN, Ellegard L, Jessup W, et al. 2014. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 232: 346-360. https://doi.org/10.1016/j.atherosclerosis.2013.11.043
  20. Hollaender PL, Ross AB, Kristensen M. 2015. Whole-grain and blood lipid changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies. Am. J. Clin. Nutr. 102: 556-572. https://doi.org/10.3945/ajcn.115.109165
  21. Musa-Veloso K, Poon TH, Elliot JA, Chung C. 2011. A comparison of the LDL-cholesterol lowering efficacy of plant stanols and plant sterols over a continuous dose range: results of a meta-analysis of randomized, placebocontrolled trials. Prostaglandins Leukot Essent Fatty Acids 85: 9-28. https://doi.org/10.1016/j.plefa.2011.02.001
  22. Yu-Poth S, Zhao G, Etherton T, Naglak M, Jonnalagadda S, Kris-Etherton PM. 1999. Effects of the national cholesterol education program's step I and step II dietary intervention programs on cardiovascular disease risk factors: a metaanalysis. Am. J. Clin. Nutr. 69: 632-646. https://doi.org/10.1093/ajcn/69.4.632
  23. Teh SS, Ahmad R, Wan-Abdullah WN, Liong MT. 2009. Evaluation of agrowastes as immobilizers for probiotics in soy milk. J. Agric. Food Chem. 57: 10187-10198. https://doi.org/10.1021/jf902003a
  24. Shimizu M, Hashiguchi M, Shiga T, Tamura HO, Mochizuki M. 2015. Meta-analysis: effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS One 10: e0139795. https://doi.org/10.1371/journal.pone.0139795
  25. Huang Y, Zheng Y. 2010. The probiotic Lactobacillus acidophilus reduces cholesterol absorption through the down-regulation of Niemann-Pick C1-like 1 in Caco-2 cells. Br. J. Nutr. 103: 473-478. https://doi.org/10.1017/S0007114509991991
  26. Huang Y, Wang J, Quan G, Wang X, Yang L, Zhong L. 2014. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice. Appl. Environ. Microbiol. 80: 7496-7504. https://doi.org/10.1128/AEM.02926-14
  27. Huang Y, Wang J, Cheng Y, Zheng Y. 2010. The hypocholesterolaemic effects of Lactobacillus acidophilus American type culture collection 4356 in rats are mediated by the down-regulation of Niemann-Pick C1-like 1. Br. J. Nutr. 104: 807-812. https://doi.org/10.1017/S0007114510001285
  28. Consonni A, Cordiglieri C, Rinaldi E, Marolda R, Ravanelli I, Guidesi E, et al. 2018. Administration of bifidobacterium and lactobacillus strains modulates experimental myasthenia gravis and experimental encephalomyelitis in Lewis rats. Oncotarget 9: 22269-22287. https://doi.org/10.18632/oncotarget.25170
  29. Gerhard D, Sousa F, Andraus RAC, Pardo PE, Nai GA, Neto HB, et al. 2017. Probiotic therapy reduces inflammation and improves intestinal morphology in rats with induced oral mucositis. Braz. Oral Res. 31: e71.
  30. Zheng Y, Lu Y, Wang J, Yang L, Pan C, Huang Y. 2013. Probiotic properties of Lactobacillus strains isolated from Tibetan kefir grains. PLoS One 8: e69868. https://doi.org/10.1371/journal.pone.0069868
  31. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. 2010. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5: e10667. https://doi.org/10.1371/journal.pone.0010667
  32. Kato T, Fukuda S, Fujiwara A, Suda W, Hattori M, Kikuchi J, et al. 2014. Multiple omics uncovers host-gut microbial mutualism during prebiotic fructooligosaccharide supplementation. DNA Res. 21: 469-480. https://doi.org/10.1093/dnares/dsu013
  33. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
  34. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6: 610-618. https://doi.org/10.1038/ismej.2011.139
  35. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
  36. Keys A. 1984. Serum cholesterol response to dietary cholesterol. Am J Clin Nutr. 40: 351-359. https://doi.org/10.1093/ajcn/40.2.351
  37. Rudling M. 1992. Hepatic mRNA levels for the LDL receptor and HMG-CoA reductase show coordinate regulation in vivo. J. Lipid. Res. 33: 493-501. https://doi.org/10.1016/S0022-2275(20)41615-3
  38. Wilson MD, Rudel LL. 1994. Review of cholesterol absorption with emphasis on dietary and biliary cholesterol. J. Lipid. Res. 35: 943-955. https://doi.org/10.1016/S0022-2275(20)40109-9
  39. Tung YC, Lin YH, Chen HJ, Chou SC, Cheng AC, Kalyanam N, et al. 2016. Piceatannol exerts anti-obesity effects in C57BL/6 mice through modulating adipogenic proteins and gut microbiota. Molecules 21.
  40. Russo M, Fabersani E, Abeijon-Mukdsi MC, Ross R, Fontana C, Benitez-Paez A, et al. 2016. Lactobacillus fermentum CRL1446 ameliorates oxidative and metabolic parameters by increasing intestinal feruloyl esterase activity and modulating microbiota in caloric-restricted mice. Nutrients 8.
  41. Jasso-Padilla I, Juarez-Flores B, Alvarez-Fuentes G, De la Cruz-Martinez A, Gonzalez-Ramirez J, Moscosa-Santillan M, et al. 2017. Effect of prebiotics of Agave salmiana fed to healthy Wistar rats. J. Sci. Food Agric. 97: 556-563. https://doi.org/10.1002/jsfa.7764
  42. Xie N, Cui Y, Yin YN, Zhao X, Yang JW, Wang ZG, et al. 2011. Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complement. Altern. Med. 11: 53. https://doi.org/10.1186/1472-6882-11-53
  43. Catry E, Pachikian BD, Salazar N, Neyrinck AM, Cani PD, Delzenne NM. 2015. Ezetimibe and simvastatin modulate gut microbiota and expression of genes related to cholesterol metabolism. Life Sci. 132: 77-84. https://doi.org/10.1016/j.lfs.2015.04.004
  44. Tomaro-Duchesneau C, Saha S, Malhotra M, Jones ML, Labbe A, Rodes L, et al. 2014. Effect of orally administered L. fermentum NCIMB 5221 on markers of metabolic syndrome: an in vivo analysis using ZDF rats. Appl. Microbiol. Biotechnol. 98: 115-126. https://doi.org/10.1007/s00253-013-5252-8
  45. Liu Y, Zhao F, Liu J, Wang H, Han X, Zhang Y, et al. 2017. Selection of cholesterol-lowering lactic acid bacteria and its effects on rats fed with high-cholesterol diet. Curr. Microbiol. 74: 623-631. https://doi.org/10.1007/s00284-017-1230-1
  46. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V, et al. 2011. Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. J. Dairy Sci. 94: 3288-3294. https://doi.org/10.3168/jds.2010-4128
  47. Influence of a probiotic soy product on fecal microbiota and its association with cardiovascular risk factors in an animal model. Lipids Health Dis. 10: 126. https://doi.org/10.1186/1476-511X-10-126
  48. Bahekar AA, Singh S, Saha S, Molnar J, Arora R. 2007. The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis. Am. Heart J. 154: 830-837. https://doi.org/10.1016/j.ahj.2007.06.037
  49. Begley M, Hill C, Gahan CG. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72: 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
  50. Park YH, Kim JG, Shin YW, Kim SH, Whang KY. 2007. Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J. Microbiol. Biotechnol. 17: 655-662.
  51. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. 1999. Bile acids: natural ligands for an orphan nuclear receptor. Science 284: 1365-1368. https://doi.org/10.1126/science.284.5418.1365
  52. Fukushima M, Nakano M, Morii Y, Ohashi T, Fujiwara Y, Sonoyama K. 2000. Hepatic LDL receptor mRNA in rats is increased by dietary mushroom (Agaricus bisporus) fiber and sugar beet fiber. J. Nutr. 130: 2151-2156. https://doi.org/10.1093/jn/130.9.2151
  53. Gilliland SE, Nelson CR, Maxwell C. 1985. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49: 377-381. https://doi.org/10.1128/AEM.49.2.377-381.1985
  54. Liong MT, Shah NP. 2005. Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J. Dairy Sci. 88: 55-66. https://doi.org/10.3168/jds.S0022-0302(05)72662-X
  55. Fei L, Zhang J, Niu H, Yuan C, Ma X. 2016. Effects of rosuvastatin and MiR-126 on myocardial injury induced by acute myocardial infarction in rats: role of vascular endothelial growth factor A (VEGF-A). Med. Sci. Monit. 22: 2324-2334. https://doi.org/10.12659/MSM.896983
  56. Kunze A, Huwyler J, Camenisch G, Poller B. 2014. Prediction of organic anion-transporting polypeptide 1B1-and 1B3-mediated hepatic uptake of statins based on transporter protein expression and activity data. Drug Metab. Dispos. 42: 1514-1521. https://doi.org/10.1124/dmd.114.058412
  57. Zhao MM, Li D, Li Y. 2015. [Regulation of organic anion transporting polypeptides expression and activity]. Yao Xue Xue Bao 50: 400-405.
  58. Le Vee M, Jouan E, Stieger B, Lecureur V, Fardel O. 2011. Regulation of drug transporter expression by oncostatin M in human hepatocytes. Biochem. Pharmacol. 82: 304-311. https://doi.org/10.1016/j.bcp.2011.04.017
  59. Naruszewicz M, Johansson ML, Zapolska-Downar D, Bukowska H. 2002. Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am. J. Clin. Nutr. 76: 1249-1255. https://doi.org/10.1093/ajcn/76.6.1249
  60. Wang IK, Wu YY, Yang YF, Ting IW, Lin CC, Yen TH, et al. 2015. The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Benef. Microbes. 6: 423-430. https://doi.org/10.3920/BM2014.0088
  61. Karamese M, Aydin H, Sengul E, Gelen V, Sevim C, Ustek D, et al. 2016. The immunostimulatory effect of lactic acid bacteria in a rat model. Iran J. Immunol. 13: 220-228.
  62. Martinez I, Wallace G, Zhang C, Legge R, Benson AK, Carr TP, et al. 2009. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl. Environ. Microbiol. 75: 4175-4184. https://doi.org/10.1128/AEM.00380-09

Cited by

  1. Influence of a cholesterol-lowering strain Lactobacillus plantarum LP3 isolated from traditional fermented yak milk on gut bacterial microbiota and metabolome of rats fed with a high-fat diet vol.11, pp.9, 2019, https://doi.org/10.1039/d0fo01939a
  2. Probiotics, Prebiotics and Synbiotics—A Promising Strategy in Prevention and Treatment of Cardiovascular Diseases? vol.21, pp.24, 2019, https://doi.org/10.3390/ijms21249737
  3. Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases vol.26, pp.4, 2019, https://doi.org/10.3390/molecules26041172
  4. Protective effect of Rosuvastatin on Azithromycin induced cardiotoxicity in a rat model vol.269, 2019, https://doi.org/10.1016/j.lfs.2021.119099
  5. Probiotics supplementation and cardiometabolic risk factors: A new insight into recent advances, potential mechanisms, and clinical implications vol.16, 2019, https://doi.org/10.1016/j.phanu.2021.100261
  6. The Role of Gut Microbiota on Cholesterol Metabolism in Atherosclerosis vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22158074
  7. Effects of cholesterol and Lactobacillus acidophilus on testicular function vol.48, pp.3, 2019, https://doi.org/10.5653/cerm.2020.04322
  8. Characterization of Pediococcus acidilactici FS2 isolated from Korean traditional fermented seafood and its blood cholesterol reduction effect in mice vol.87, 2019, https://doi.org/10.1016/j.jff.2021.104847