DOI QR코드

DOI QR Code

Structural Disorganization of Intestinal Tumor Spheroid by Microbial Ribotoxins

방사선 모사 미생물 유래 리보솜 스트레스에 의한 대장암 스페로이드 구조 결함 유발

  • Kim, Juil (Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, BioMedical Research Institute, Pusan National University) ;
  • Kim, Joongkon (Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, BioMedical Research Institute, Pusan National University) ;
  • Yu, Mira (Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, BioMedical Research Institute, Pusan National University) ;
  • Moon, Yuseok (Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, BioMedical Research Institute, Pusan National University)
  • Received : 2018.10.10
  • Accepted : 2018.12.04
  • Published : 2019.03.28

Abstract

Radiation therapy has many side effects, such as digestive mucosal ulcers, without regard to its efficacy. The purpose of this study is to address an alternative method to replace the limitation of radiation therapy using radiomimetic microbial ribotoxins. In the evaluation of cancer therapy, we analyzed the formation of colorectal cancer (CRC) cell spheroids, which can take into account the heterogeneous cellular constitution, tumor stem cells, and the surrounding microenvironment. Ribotoxic stress interfered with the spheroid structure composed of relatively small clusters. Spheroids under ribotoxic stress were structurally sparse and their shrinkage was very slow. In the control group, the clusters of strongly aggregated cells were resistant to physical stress, but the ribotoxic stress-exposed spheroids were easily broken up by the physical stress. Moreover, the ribosome-insulted CRC cells slowly migrated to form clusters and the cell-cell junctional points in the ribosome-insulted spheroids were rarer than those in the control CRC spheroid. Moreover, levels of the cell-to-cell junctional protein E-cadherin were suppressed by ribotoxic stress in both allograft and xenograft spheroids. In conclusion, the radiomimetic microbial ribotoxins induced structural defects in CRC cell spheroids via retardation of migration and cell-cell junction in the formation of three-dimensional structures, and provides a basis for the mechanism of pharmacological radiomimetic anticancer actions as an alternate to radiotherapy against cancer.

기존에는 방사선 요법은 효과에 비해 소화기 점막 궤양 등 부작용이 많다. 본 연구는 방사선의 작용을 모사하는 방사선 모사 미생물 유래 리보솜 스트레스 반응을 이용하여 방사선 치료의 한계를 대체할 기전적 방법을 모색하고자 한다. 암 치료의 평가를 위해서 대장암의 비균질적인 세포구성, 종양줄기세포 및 주위 미세환경 및 배양 기질 등의 상호작용을 고려할 수 있는 소화기암 스페로이드를 이용하였다. 대조군 대장암 스페로이드에 비해서 리보솜 스트레스하에서는 스페로이드 구조가 상대적으로 큰 군집을 형성하였다. 하지만 이는 구조 자체가 매우 섬긴 세포간 구성을 가진 스페로이드였으며 스페로이드 형성과정의 크기 수축은 대조군에 비해 매우 느리게 나타났다. 대조군은 강하게 뭉친 소규모 클러스트의 집합체가 최종적으로 스페로이드를 형성하여 물리적 손상을 받아도 단단한 소규모 클러스트는 유지되나 리보솜 스트레스 하에서는 물리적 손상에 의해 형태가 파손 후에는 스페로이드 형성이 거의 일어나지 않았다. 기전적으로 리보솜 스트레스 하에서 암세포의 군집하는 이동속도는 매우 느렸으며, 뭉치더라도 세포-세포간 접합부위가 상대적으로 적었다. 이 대장암 스페로이드를 이종 및 동종 이식을 통해 동물에서 증식 시 종양 조직 형성이 매우 억제되었으며, 형성이 되어도 세포-세포간 접합에 핵심단백질인 E-cadherin의 발현이 매우 감소 됨을 알 수 있었다. 결론적으로 방사선 모사 미생물 유래 리보솜 스트레스는 종양 스페로이드 세포 이동 및 접합을 저해하여 3차원 구조 형성 결함을 유발하였으며, 향후 방사선을 대체하여 약물적으로 방사선 항암효과를 구현하는 기반을 제공한다.

Keywords

References

  1. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. 2004. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6: 17-32. https://doi.org/10.1016/j.ccr.2004.06.010
  2. Manfredi S, Lepage C, Hatem C, Coatmeur O, Faivre J, Bouvier AM. 2006. Epidemiology and management of liver metastases from colorectal cancer. Ann. Surg. 244: 254-259. https://doi.org/10.1097/01.sla.0000217629.94941.cf
  3. Jin K, Gao W, Lu Y, Lan H, Teng L, Cao F. 2012. Mechanisms regulating colorectal cancer cell metastasis into liver (Review). Oncol. Lett. 3: 11-15. https://doi.org/10.3892/ol.2011.432
  4. O'Brien CA, Pollett A, Gallinger S, Dick JE. 2007. A human colon cancer cell capable of initiating tumour growth in immunode-ficient mice. Nature 445: 106-110. https://doi.org/10.1038/nature05372
  5. Cho RW, Clarke MF. 2008. Recent advances in cancer stem cells. Curr. Opin. Genet. Dev. 18: 48-53. https://doi.org/10.1016/j.gde.2008.01.017
  6. Abdullah LN, Chow EK. 2013. Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med. 2: 3. https://doi.org/10.1186/2001-1326-2-3
  7. Kozovska Z, Gabrisova V, Kucerova L. 2014. Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomed. Pharmacother. 68: 911-916. https://doi.org/10.1016/j.biopha.2014.10.019
  8. Ong CW, Kim LG, Kong HH, Low LY, Iacopetta B, Soong R, et al. 2010. CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Mod. Pathol. 23: 450-457. https://doi.org/10.1038/modpathol.2009.181
  9. Du L, Wang H, He L, Zhang J, Ni B, Wang X, et al. 2008. CD44 is of functional importance for colorectal cancer stem cells. Clin. Cancer Res. 14: 6751-6760. https://doi.org/10.1158/1078-0432.CCR-08-1034
  10. Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, et al. 2009. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69: 3382-3389. https://doi.org/10.1158/0008-5472.CAN-08-4418
  11. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. 2007. Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111-115. https://doi.org/10.1038/nature05384
  12. Moon Y. 2011. Mucosal Injuries due to Ribosome-Inactivating Stress and the Compensatory Responses of the Intestinal Epithelial Barrier. Toxins 3: 1263-1277. https://doi.org/10.3390/toxins3101263
  13. Maresca M, Fantini J. 2010. Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases. Toxicon 56: 282-294. https://doi.org/10.1016/j.toxicon.2010.04.016
  14. Mishra S, Tewari P, Chaudhari BP, Dwivedi PD, Pandey HP, Das M. 2016. Deoxynivalenol induced mouse skin tumor initiation: Elucidation of molecular mechanisms in human HaCaT keratinocytes. Int. J. Cancer. 139: 2033-2046. https://doi.org/10.1002/ijc.30260
  15. Graziani F, Pujol A, Nicoletti C, Pinton P, Armand L, Di Pasquale E, et al. 2015. The food-associated ribotoxin deoxynivalenol modulates inducible NO synthase in human intestinal cell model. Toxicol. Sci. 145: 372-382. https://doi.org/10.1093/toxsci/kfv058
  16. Yoder JM, Aslam RU, Mantis NJ. 2007. Evidence for widespread epithelial damage and coincident production of monocyte chemotactic protein 1 in a murine model of intestinal ricin intoxication. Infect. Immun. 75: 1745-1750. https://doi.org/10.1128/IAI.01528-06
  17. Islam Z, Gray JS, Pestka JJ. 2006. p38 Mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes. Toxicol. Appl. Pharmacol. 213: 235-244. https://doi.org/10.1016/j.taap.2005.11.001
  18. Iordanov MS, Pribnow D, Magun JL, Dinh TH, Pearson JA, Chen SL, et al. 1997. Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol. Cell Biol. 17: 3373-3381. https://doi.org/10.1128/MCB.17.6.3373
  19. Shifrin VI, Anderson P. 1999. Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J. Biol. Chem. 274: 13985-13992. https://doi.org/10.1074/jbc.274.20.13985
  20. Park SH, Choi HJ, Yang H, Do KH, Kim J, Moon Y. 2010. Repression of peroxisome proliferator-activated receptor gamma by mucosal ribotoxic insult-activated CCAAT/enhancer-binding protein homologous protein. J. Immunol. 185: 5522-5530. https://doi.org/10.4049/jimmunol.1001315
  21. Zhou HR, Lau AS, Pestka JJ. 2003. Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenolinduced ribotoxic stress response. Toxicol. Sci. 74: 335-344. https://doi.org/10.1093/toxsci/kfg148
  22. Laskin JD, Heck DE, Laskin DL. 2002. The ribotoxic stress response as a potential mechanism for MAP kinase activation in xenobiotic toxicity. Toxicol. Sci. 69: 289-291. https://doi.org/10.1093/toxsci/69.2.289
  23. Birgersdotter A, Sandberg R, Ernberg I. 2005. Gene expression perturbation in vitro--a growing case for three-dimensional (3D) culture systems. Semin. Cancer Biol. 15: 405-412.
  24. Edmondson R, Broglie JJ, Adcock AF, Yang L. 2014. Threedimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12: 207-218. https://doi.org/10.1089/adt.2014.573
  25. Kim JB. 2005. Three-dimensional tissue culture models in cancer biology. Semin. Cancer Biol. 15: 365-377.
  26. Choi HJ, Kim J, Do KH, Park SH, Moon Y. 2013. Prolonged NF-kappaB activation by a macrophage inhibitory cytokine 1-linked signal in enteropathogenic Escherichia coli-infected epithelial cells. Infect. Immun. 81: 1860-1869. https://doi.org/10.1128/IAI.00162-13
  27. Fluckiger A, Dumont A, Derangere V, Rebe C, de Rosny C, Causse S, et al. 2016. Inhibition of colon cancer growth by docosahexaenoic acid involves autocrine production of TNF ${\alpha}$. Oncogene 35: 4611-4622. https://doi.org/10.1038/onc.2015.523
  28. Howard A, Tahir I, Javed S, Waring SM, Ford D, Hirst BH. 2010. Glycine transporter GLYT1 is essential for glycine-mediated protection of human intestinal epithelial cells against oxidative damage. J. Physiol. 588: 995-1009. https://doi.org/10.1113/jphysiol.2009.186262
  29. Oh CK, Lee SJ, Park SH, Moon Y. 2016. Acquisition of chemoresistance and other malignancy-related features of colorectal cancer cells are incremented by Ribosome-inactivating stress. J. Biol. Chem. 291: 10173-10183. https://doi.org/10.1074/jbc.M115.696609