DOI QR코드

DOI QR Code

Antioxidant Activity and Phenolic Content of Different Parts of Lotus and Optimization of Extraction Condition using Response Surface Methodology

  • Received : 2018.06.18
  • Accepted : 2018.11.09
  • Published : 2019.03.31

Abstract

Nelumbo nucifera Gaertn. (Nymphaeaceae) is commonly called lotus and its leaves are widely been used as functional ingredients due to its antioxidant activity. For maximum efficacy, optimized extraction condition was established using response surface methodology. The high F-values, low p-values and insignificant p-value for lack-of-fit supported the fitness of the model and yielded the second-order polynomial regression for the antioxidant activity. The optimized extract was obtained by the extraction of 1 g of lotus leaves with 40 mL of 50% MeOH at $10.0^{\circ}C$, which exerted 70.1% antioxidant activity. Close correlation between phenolic content and antioxidant activity suggested phenolic compounds as active constituents of lotus leaves. In addition, comparison of different parts of lotus demonstrated the most potent antioxidant activity of flowers, followed by leaves and roots. Taken together, these results provide useful information about lotus leaves for the development as antioxidant ingredients. In addition, flowers and roots as well as leaves are suggested as good sources for antioxidant activity.

Keywords

References

  1. Zhu, M. Z.; Wu, W.; Jiao, L. L.; Yang, P. F.; Guo, M. Q. Molecules 2005, 20, 10553-10565. https://doi.org/10.3390/molecules200610553
  2. Je, J. Y.; Lee, D. B.; Food Funct. 2015, 6, 1911-1918. https://doi.org/10.1039/C5FO00201J
  3. Liao, C. H., Lin, J. Y Food Chem. Toxicol. 2013, 58, 416-422. https://doi.org/10.1016/j.fct.2013.05.018
  4. Du, H.; You, J. S.; Zhao, X.; Park, J. Y.; Kim, S. H.; Chang, K. J. J. Biomed. Sci. 2010, 17, S1-S42. https://doi.org/10.1186/1423-0127-17-S1-S1
  5. Lin. S.; Li, D.; Huang, B.; Chen, Y.; Lu, X.; Wang, Y. J. Ethnopharmacol. 2013, 149, 263-269. https://doi.org/10.1016/j.jep.2013.06.034
  6. Nakamura, S.; Kasahima, S.; Tanabe, G.; Oda, Y.; Yokota, N.; Fujimoto, K.; Matsumoto, T.; Sakuma, R.; Ohta, T.; Ogawa, K.; Nishida, S.; Miki, H.; Matsuda, H.; Muraoka, O.; Yoshikawa, M. Bioorg. Med. Chem. 2013, 21, 779-787. https://doi.org/10.1016/j.bmc.2012.11.038
  7. Ahn, J. H.; Kim, E. S.; Lee, C.; Kim, S.; Cho, S. H.; Hwang, B. Y.; Lee, M. K. Bioorg. Med. Chem. Lett. 2013, 23, 3604-3608. https://doi.org/10.1016/j.bmcl.2013.04.013
  8. Paudel, K. R.; Panth, N. Evid. Based Complement. Alternat. Med. 2015, 2015, 789124. https://doi.org/10.1155/2015/789124
  9. Maritim, A. C.; Sanders, R. A.; Watkins, J. B. 3rd. J. Biochem. Mol. Toxicol. 2003, 17, 24-38 . https://doi.org/10.1002/jbt.10058
  10. Reuter, S.; Gupta, S. C.; Chaturvedi, M. M.; Aggarwal, B. B. Free Radic. Biol. Med. 2010, 49, 1603-1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
  11. Pohanka, M. Curr. Med. Chem. 2014, 21, 356-364. https://doi.org/10.2174/09298673113206660258
  12. Pisoschi, A. M.; Pop, A. Eur. J. Med. Chem. 2015, 97, 55-74. https://doi.org/10.1016/j.ejmech.2015.04.040
  13. Alasalvar, C.; Bolling, B. W. Br. J. Nutr. 2015, 113, S68- S78. https://doi.org/10.1017/S0007114514003729
  14. Viapiana, A.; Wesolowski, M. Plant Foods Hum. Nutr. 2017, 72, 82-87. https://doi.org/10.1007/s11130-016-0594-x
  15. Park, Y. S.; Towantakawanit, K.; Kowalska, T.; Jung S.T.; Ham, K.S.; Heo, B. G.; Cho, J. Y.; Yun, J. G.; Kim, H. J.; Gorinstein, S. J. Med. Food 2009, 12, 1057-1064. https://doi.org/10.1089/jmf.2009.0018
  16. Zhao, X.; Shen, J.; Chang, K. J.; Kim, S. H. J. Agric. Food Chem. 2014, 62, 6227-6235. https://doi.org/10.1021/jf501644t
  17. Liu, Y.; Ma, S. S.; Ibrahim, S. A.; Li, E. H.; Yang, H.; Huang, W. Food Chem. 2015, 185, 159-164. https://doi.org/10.1016/j.foodchem.2015.03.117
  18. Zhang, W. M.; Huang, W. Y.; Chen, W. X.; Han, L.; Zhang, H. D Molecules 2014, 19, 16416-16427. https://doi.org/10.3390/molecules191016416
  19. Jeong, J. Y.; Jo, Y. H.; Lee, K. Y.; Do, S. G.; Hwang, B. Y.; Lee, M. K. Bioorg. Med. Chem. Lett. 2014, 24, 2329-2333. https://doi.org/10.1016/j.bmcl.2014.03.067
  20. Lu, C. L.; Zhu, Y. F.; Hu, M. M.; Wang, D. M.; Xu, X. J.; Lu, C. J.; Zhu, W. Molecules 2015, 20, 625-644. https://doi.org/10.3390/molecules20010625
  21. Ferreira, S. L. C.; Bruns, R. E.; Ferreira, H. S.; Matos, G. D.; David, J. M.; Brandao, G. C.; da Silva, E. G.; Portugal, L. A.; dos Reis, P. S.; Souza, A. S.; dos Santos, W. N. Anal. Chim. Acta. 2007, 597, 179-186. https://doi.org/10.1016/j.aca.2007.07.011
  22. Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Talanta 2008, 76, 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
  23. Xu, Q.; Shen, Y.; Wang, H.; Zhang, N.; Xu, S.; Zhang, L. Food Chem. 2013, 138, 2122-2129. https://doi.org/10.1016/j.foodchem.2012.11.099
  24. He, Y.; Peng, J.; Hamann, M. T.; West, L. M. J. Nat. Prod. 2014, 77, 2138-2143. https://doi.org/10.1021/np5002362
  25. Jo, Y. H.; Shin, B.; Liu, Q.; Lee, K. Y.; Oh, D. C.; Hwang, B. Y.; Lee, M. K. J. Nat. Prod. 2014, 77, 2361-2366. https://doi.org/10.1021/np5002797
  26. Hiep, N. T.; Kwon, J.; Kim, D. W.; Hwang, B. Y.; Lee, H. J.; Mar, W.; Lee, D. Phytochemistry 2015, 111, 141-148. https://doi.org/10.1016/j.phytochem.2014.10.021
  27. Chung, I. M.; Lim, J. J.; Ahn, M. S.; Jeong, H. N.; An, T. J.; Kim, S. H. J. Ginseng Res. 2016, 40, 68-75. https://doi.org/10.1016/j.jgr.2015.05.006

Cited by

  1. Removal and enrichment of Cr(VI) from aqueous solutions by lotus seed pods vol.92, pp.1, 2020, https://doi.org/10.1002/wer.1187
  2. 화장품 소재로서의 꽃 10 종 에탄올추출물 생리활성 특성연구 vol.28, pp.4, 2019, https://doi.org/10.7783/kjmcs.2020.28.4.260
  3. Antioxidant Activity, Polyphenolic Content, and FT-NIR Analysis of Different Aspilia africana Medicinal Plant Tissues vol.2021, 2019, https://doi.org/10.1155/2021/9917810
  4. Antioxidant Phenylpropanoid Glycosides from Ginkgo biloba Fruit and Identification of a New Phenylpropanoid Glycoside, Ginkgopanoside vol.10, pp.12, 2019, https://doi.org/10.3390/plants10122702