DOI QR코드

DOI QR Code

루마니아 핀슬러 기하학파 형성의 역사

On the History of Formation of Romanian School of Finsler Geometry

  • 투고 : 2019.01.22
  • 심사 : 2019.02.27
  • 발행 : 2019.02.28

초록

We divide the timeline of the history of Finsler geometry, which dates back to Riemann's inaugural lecture in 1854, into three periods (hibernation, hiatus, rebirth) and we study formation of Romanian Finsler school around Iasi, Romania during the hiatus period. We look for the history centered around Radu Miron who is a third generation geometer of Iasi University and the mathematical heritage there through five generations. We also investigate mathematical impact of T. Levi-Civita, D. Hilbert, ${\acute{E}}$ Cartan who are considered as top mathematicians at their time.

키워드

참고문헌

  1. M. ANASTASIEI, A Historical Remark on the Connections of Chern and Rund in In Finsler Geometry, Contemporary Mathematics, Amer. Math. Soc. 196 (1996), 171-176.
  2. D. BAO, S. S. Chern and Z. SHEN, Finsler Geometry, Contemporary Mathematics, Amer. Math. Soc. 196 (1996).
  3. L. BERWALD, Untersuchung der Krummung allgemeiner metrischer Raume auf Grund des in ihnen herrschenden Parallelismus, Math. Z. 25(1) (1926), 40-73. https://doi.org/10.1007/BF01283825
  4. L. BERWALD, Uber zweidimensionale allgemeine metrische Raume, J. Reine Angew. Math. 156 (1927), 191-222.
  5. E. Cartan, Sur la representation geometrique des systemes materiels non holonomes, Proc. Int. Congr. Math., Bologna, 4 (1928), 253-261.
  6. E. Cartan, Les espaces de Finsler, Actual. Sci. Ind. 79 (1934).
  7. S. S. CHERN, Local Equivalence and Euclidean Connections in Finsler Spaces, Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5 (1948), 95-121.
  8. S. S. CHERN, On Finsler Geometry, C. R. Acad. Sci. Paris Ser. I Math. 314 (1992), 757-761.
  9. M. CHO, History and Development of Sphere Theorems in Riemannian Geometry, The Korean Journal for History of Mathematics 24(3) (2011), 23-35.
  10. P. FINSLER, Uber Kurven und Flachen in allgemeinen Raumen, Dissertation at the University of Gottingen, 1919.
  11. M. HAIMOVICI, Les formules fondamentales des la theorie des hypersurfaces d'un espace general, Ann. Sci. Univ. Iasi Ser. I., 20 (1935), 39-58.
  12. M. HAIMOVICI, Le parallelisme dans les espaces de Finsler et la differentialtion invariante de T. Levi-Civita, Ann. Sci. Univ. Iasi Ser. I., 24 (1938), 214-218.
  13. M. HAIMOVICI, Variete totalment extermales et Variete totalment geodesique dans les espaces de Finsler, Ann. Sci. Univ. Iasi Ser. I., 25 (1939), 559-644.
  14. M. HAIMOVICI, La geometrie des systemes mecaniques non holonomes, Acad. Repub. Pop. Romine. Fil. Iasi. Stud. Cerc. Sti. Ser. I., 5 (1954), 49-84.
  15. G. HAN, A Historical Note on Riemann's Life and Achievement, The Korean Journal for History of Mathematics 24(2) (2011), 61-70.
  16. Y.-W. KIM and Y. JIN, Elie Cartan and Riemannian Geometry of 20th Century, The Korean Journal for History of Mathematics 22(2) (2009), 13-26.
  17. M. MATSUMOTO, Foundations of Finsler Geometry and Special Finsler Spaces, Kasheisha Press, 1986.
  18. R. Miron, Le probleme de la geometrisation des systemes mecaniques non holonomes, Acad. R. P. Romine. Fil. Iasi. Stud. Cerc. Sti. Mat., 7 (1956), 15-49.
  19. R. MIRON, Les configurations Myller M(C, ${{\xi}_1}^i$, $T^{n-1}$) dans les espaces de Riemann $V_n$. Applications a l'etude des hypersurfaces $V_{n-1}$ de $V_n$, Acad. R. P. Romine Fil. Iasi Stud. Cerc. Sti. Mat, 12 (1961), 315-346.
  20. R. MIRON, M. ANASTASIEI, The Geometry of Lagrange Spaces, Kluwer Academic Publishers, 1993.
  21. Mathematics Genealogy Project http://genealogy.math.ndsu.nodak.edu/index.php.
  22. A. MOOR, Uber die Torsions und Krummungsinvarianten der dreidimensionalen Finslerschen Raume, Math. Nachr. 16 (1957), 85-99. https://doi.org/10.1002/mana.19570160204
  23. C. K. PARK, Lobachevsky's Philosophy of Mathematics and Non-Euclidean Geometry, The Korean Journal for History of Mathematics 24(4) (2011), 21-31.
  24. B. RIEMANN, Uber die Hypothesen, welche der Geometrie zu Grunde liegen, Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Gottingen 13 (1867), 1-15.
  25. H. RUND, The Differential Geometry of Finsler Spaces, Springer-Verlag, 1959.
  26. J. SYNGE, A generalization of the Riemannian line-element, Trans. of the Amer. Math. Soc. 27(2) (1925), 61-67. https://doi.org/10.1090/S0002-9947-1925-1501298-7
  27. J. TAYLOR, Parallelism and transversality in a sub-space of a general (Finsler) space, Ann. of Math. 28(2) (1927), 620-628. https://doi.org/10.2307/1968402
  28. Wikipedia http://en.wikipedia.org/wiki.
  29. D. Y. WON, On the Development of Differential Geometry from mid 19C to early 20C by Christoffel, Ricci and Levi-Civita, Journal for History of Mathematics 28(2) (2015), 103-115. https://doi.org/10.14477/jhm.2015.28.2.103
  30. D. Y. WON, On the History of the Birth of Finsler Geometry at Gottingen, Journal for History of Mathematics 28(3) (2015), 133-149. 원대연, 괴팅겐에서 핀슬러 기하가 탄생한 역사, Journal for History of Mathematics 28(3) (2015), 133-149. https://doi.org/10.14477/jhm.2015.28.3.133
  31. D. Y. WON, On the History of the establishment of the Hungarian Debrecen School of Finsler Geometry after L. Berwald, Journal for History of Mathematics 31(1) (2018), 37-51. https://doi.org/10.14477/jhm.2018.31.1.037