DOI QR코드

DOI QR Code

Technology Trend on Commercial Polymeric Membranes for Water Treatment

수처리용 상용 고분자 분리막 제품 기술동향

  • Jang, Haenam (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH))
  • 장해남 (경남과학기술대학교(GNTECH) 미래융복합기술연구소 에너지공학과)
  • Received : 2019.02.06
  • Accepted : 2019.02.21
  • Published : 2019.02.28

Abstract

In the field of water treatment membranes, polymers are used together with ceramics as the most important materials. In this review, I tried to analyze the technology trends of polymer membrane materials based on commercial products. For this purpose, according to the types of water treatment membranes such as MF (Microfiltration), UF (Ultrafiltration) and NF (Nanofiltration), the trends of polymer membrane products were investigated by countries, materials, and companies. Through this, we were able to classify the types of materials that are mainly used for each type of membrane, and at the same time, identify the companies that are dominant in the market, and analyze which materials constitute the product portfolio. Based on these results, we have presented the characteristics of the material market according to each type of membrane, and proposed a technology development strategy to enter each market based on these characteristics.

수처리 분리막 분야에서 고분자는 세라믹과 함께 가장 중요한 소재로 이용되고 있다. 본 총설에서는 이러한 고분자 분리막 소재의 기술동향을 상용화 제품을 중심으로 분석하고자 하였으며, 이를 위하여 수처리 분리막의 종류에 따라 MF (Microfiltration), UF (Ultrafiltration), NF (Nanofiltration)/RO (Reverse Osmosis) 분리막으로 구분하여, 국가별, 소재별, 회사별 고분자 분리막 제품 동향을 살펴보았다. 이를 통하여, 각 분리막 종류별로 주로 사용되고 있는 소재의 종류를 파악할 수 있었으며, 동시에 시장 지배적인 위치에 있는 업체들을 파악하고 이들 업체들이 어떤 소재들로 제품 포트폴리오를 구성하고 있는지 분석할 수 있었다. 이러한 결과들을 바탕으로 각각의 분리막 종류에 따른 소재 시장의 특징을 제시하였으며, 이런 특징을 바탕으로 각 시장에 신규로 진입하기 위한 기술 개발 전략을 제안하였다.

Keywords

References

  1. Y. H. Park and S. Y. Nam, "Characterization of water treatment membrane using various hydrophilic coating materials", Membr. J., 27, 60 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.60
  2. C. H. Woo, "Research trend of membrane for water treatment by analysis of patent and papers publication", Appl. Chem. Eng., 28, 410 (2017). https://doi.org/10.14478/ace.2017.1059
  3. KMAC, Sejong Univ., Yooshin Co., "Trend analysis report: Establishment of overseas entry strategy of water treatment industry by target market", p. 139 (2017).
  4. J. Lee, J. K. Lee, S. Uhm, and H. J. Lee, "Electrochemical technologies: Water treatment", Appl. Chem. Eng., 22, 235 (2011).
  5. Y. J. Cho and J. W. Rhim, "Cleaning of the waste reverse osmosis membrane filters for the household water purifier and their performance enhancement study", Membr. J., 27, 232 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.232
  6. H. Jang, D. Kwon, and J. Kim, "Seawater desalination pretreatments and future challenges", Membr. J., 25, 301 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.301
  7. B. Nicolaisen, "Developments in membrane technology for water treatment", Desalination, 153, 355 (2003). https://doi.org/10.1016/S0011-9164(02)01127-X
  8. C. O. Park and J. W. Rhim, "Preparation and performance of low pressure PVDF nano-composite hollow fiber membrane using hydrophilic polymer", Membr. J., 28, 361 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.361
  9. J.-H. Chung, K.-H. Choo, and H.-S. Park, "Low pressure hybrid membrane processes for drinking water treatment", Membr. J., 17, 161 (2007).
  10. KMAC, "Report on overseas entry strategy of water treatment industry (USA, Canada, Colombia, Mexico)" (2017).
  11. C.-H. Yun, J.-H. Kim, K. W. Lee, and S. H. Park, "Water treatment application of a large pore micro-filtration membrane and its problems", Membr. J., 24, 194 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.3.194
  12. J. W. Lee and S. Y. Nam, "Effect of coagulation heat capacity on the pvdf membrane via TIPS method", Membr. J., 27, 350 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.4.350
  13. J. W. Lee and S. Y. Nam, "Effect of heat capacity of coagulant on morphology of PVDF-silica mixture through tips process for the application of porous membrane", Membr. J., 27, 458 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.458
  14. E. Matthiasson, "The role of macromolecular adsorption in fouling of ultrafiltration membranes", J. Membr. Sci., 16, 23 (1983). https://doi.org/10.1016/S0376-7388(00)81297-1
  15. N. Kim and B. Jung, "Study on morphology control of polymeric membrane with clathrochelate metal complex", Membr. J., 24, 472 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.6.472
  16. S.-H. Lee, M.-S. Lee, and K.-H. Youm, "Preparation and characterization of mixed matrix membrane consisting of polyethersulfone and ZnO nanoparticles", Membr. J., 26, 463 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.6.463
  17. H. Jang, S. Kim, Y. Lee, and K.-H. Lee, "Progress of nanofiltration hollow fiber membrane", Appl. Chem. Eng., 24, 456 (2013).
  18. Y.-N. Kwon, B.-M. Jun, S.-W. Han, N. T. P. Nga, H.-G. Park, and E.-T. Yun, "Chlorine disinfection in water treatment plants and its effects on polyamide membrane", Membr. J., 24, 88 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.88
  19. B.-H. Jeong, E. M. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A. K. Ghosh, and A. Jawor, "Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes", J. Membr. Sci., 294, 1 (2007). https://doi.org/10.1016/j.memsci.2007.02.025