DOI QR코드

DOI QR Code

고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor

  • 이재훈 (연세대학교 화공생명공학과) ;
  • 박철훈 (연세대학교 화공생명공학과) ;
  • 박민수 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Cheol Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 투고 : 2019.01.28
  • 심사 : 2019.02.14
  • 발행 : 2019.02.28

초록

본 연구에서는 titanium nitride (TiN) 나노 섬유와 poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) 전도성 고분자로 이루어진 전극과 poly(vinyl alcohol) (PVA) 기반 고분자 전해질 분리막을 이용하여 슈퍼 캐퍼시터를 제조하였다. TiN 나노 섬유의 경우 높은 전기 전도도와 이차원적 구조로 인한 스케폴드 효과를 기대할 수 있다는 점에서 전극 물질로 사용되었다. PEDOT-PSS 전도성 고분자는 수소 이온과 산화-환원 반응을 통해 보다 높은 정전용량을 나타낼 수 있으며 용액상에 분산이 용이해 유무기 복합제를 형성하기에 적합하였다. PVA 기반의 고분자 전해질 분리막은 기존의 액상의 전해질의 문제인 외부 충격에 대한 안정성을 확보할 수 있으며 염으로 사용된 $H_3PO_4$의 경우 수소 이온은 빠른 확산으로 인해 캐퍼시터의 충방전 효율에 이점이 있다. 본 연구에서 보고된 PEDOT-PSS/TiN 슈퍼캐퍼시터의 정전용량은 약 75 F/g으로 기존의 탄소기반 캐퍼시터에 비해 큰 폭으로 증가한 값이다.

In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

과제정보

연구 과제 주관 기관 : 과학기술정보통신부

참고문헌

  1. B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, and M. Cai, "Nitrogen-doped activated carbon for a high energy hybrid supercapacitor", Energy Environ. Sci., 9, 102-106 (2016). https://doi.org/10.1039/C5EE03149D
  2. Y. Li, B. Xu, H. Xu, H. Duan, X. Lu, S. Xin, W. Zhou, L. Xue, G. Fu, and A. Manthiram, "Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries", Angew. Chem., 129, 771-774 (2017). https://doi.org/10.1002/ange.201608924
  3. C. J. Zhang, S. J. Kim, M. Ghidiu, M. Q. Zhao, M. W. Barsoum, V. Nicolosi, and Y. Gogotsi, "Layered orthorhombic $Nb_2O_5@Nb_4C_3T_x$ and $TiO_2@Ti_3C_2T_x$ hierarchical composites for high performance li-ion batteries", Adv. Funct. Mater., 26, 4143-4151 (2016). https://doi.org/10.1002/adfm.201600682
  4. M. Acerce, D. Voiry, and M. Chhowalla, "Metallic 1T phase $MoS_2$ nanosheets as supercapacitor electrode materials", Nat. Nanotechnol., 10, 313-318 (2015). https://doi.org/10.1038/nnano.2015.40
  5. H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, and Z. Tang, "growth of polypyrrole ultrathin films on $mos_2$ monolayers as high performance supercapacitor electrodes", Adv. Mater., 27, 1117-1123 (2015). https://doi.org/10.1002/adma.201404622
  6. H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L. L. Zhang, A. H. MacDonald, and R. S. Ruoff, "Capacitance of carbon-based electrical double-layer capacitors", Nat. Commun., 5, 3317 (2014). https://doi.org/10.1038/ncomms4317
  7. D. Kang, Q. Liu, J. Gu, Y. Su, W. Zhang, and D. Zhang, ""Egg-Box"-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors", ACS nano, 9, 11225-11233 (2015). https://doi.org/10.1021/acsnano.5b04821
  8. M. Wu, P. Ai, M. Tan, B. Jiang, Y. Li, J. Zheng, W. Wu, Z. Li, Q. Zhang, and X. He, "Synthesis of starch-derived mesoporous carbon for electric double layer capacitor", Chem. Eng. J., 245, 166-172 (2014). https://doi.org/10.1016/j.cej.2014.02.023
  9. C.-C. Hu, C.-W. Wang, K.-H. Chang, and M.-G. Chen, "Anodic composite deposition of $RuO_2$/reduced graphene oxide/carbon nanotube for advanced supercapacitors", Nanotechnology, 26, 274004 (2015). https://doi.org/10.1088/0957-4484/26/27/274004
  10. Y. Zhao, W. Ran, J. He, Y. Huang, Z. Liu, W. Liu, Y. Tang, L. Zhang, D. Gao, and F. Gao, "High performance asymmetric supercapacitors based on multilayer $mno_2$/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability", Small, 11, 1310-1319 (2015).
  11. W. Jiang, D. Yu, Q. Zhang, K. Goh, L. Wei, Y. Yong, R. Jiang, J. Wei, and Y. Chen, "Ternary hybrids of amorphous nickel hydroxide-carbon nanotube-conducting polymer for supercapacitors with high energy density, excellent rate capability, and long cycle life", Adv. Funct. Mater., 25, 1063-1073 (2015).
  12. N. Kurra, M. K. Hota, and H. N. Alshareef, "Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering", Nano Energy, 13, 500-508 (2015). https://doi.org/10.1016/j.nanoen.2015.03.018
  13. N. Kurra, R. Wang, and H. N. Alshareef, "All conducting polymer electrodes for asymmetric solid-state supercapacitors", J. Mater. Chem. A, 3, 7368-7374 (2015). https://doi.org/10.1039/C5TA00829H
  14. T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, and Y. Li, "Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability", Nano Lett., 14, 2522-2527 (2014). https://doi.org/10.1021/nl500255v
  15. H. Gao, W. Zhou, K. Park, and J. B. Goodenough, "A sodium ion battery with a low-cost cross-linked gel-polymer electrolyte", Adv. Energy Mater., 6, 1600467 (2016). https://doi.org/10.1002/aenm.201600467
  16. M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin, C. Miao, H. Du, B. Li, Q.-H. Yang, and Z. Lin, "Novel gel polymer electrolyte for high-performance lithium-sulfur batteries", Nano Energy, 22, 278-289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
  17. X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang, and Y. Chen, "A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications", Adv. Funct. Mater., 23, 3353-3360 (2013). https://doi.org/10.1002/adfm.201203556
  18. S. Y. Lee, H. J. Kim, S. Y. Nam, and C. H. Park, "Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (pems) for fuel cells", Membr. J., 26, 1-13 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.1
  19. M. S. Shin, M. S. Kang, and J. S. Park, "Preparation and characterizations of sulfonated graphene oxide (sgo)/nafion composite membranes for polymer electrolyte fuel cells", Membr. J., 27, 53-59 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.53
  20. M. S. Shin, D. E. Kim, and J. S. Park, "Preparation and characterizations of poly (arylene ether sulfone)/$sio_2$ composite membranes for polymer electrolyte fuel cell", Membr. J., 27, 182-188 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.182
  21. D. H. Kim and M. S. Kang, "Development and applications of pore-filled ion-exchange membranes", Membr. J., 28, 307-319 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.307
  22. B. S. Kim, K. Lee, S. Kang, S. Lee, J. B. Pyo, I.-S. Choi, K. Char, J. H. Park, S. S. Lee, and J. Lee, "2D reentrant auxetic structures of graphene/cnt networks for omnidirectionally stretchable supercapacitors", Nanoscale, 9, 13272-13280 (2017). https://doi.org/10.1039/C7NR02869E
  23. G. Ma, J. Li, K. Sun, H. Peng, J. Mu, and Z. Lei, "High performance solid-state supercapacitor with $PVA-KOH-K-3[Fe(CN)_6]$ gel polymer as electrolyte and separator", J. Power Sources, 256, 281-287 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.062
  24. K. Wang, Q. Meng, Y. Zhang, Z. Wei, and M. Miao, "High performance two ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays", Adv. Mater., 25, 1494-1498 (2013). https://doi.org/10.1002/adma.201204598
  25. Q. Chen, X. Li, X. Zang, Y. Cao, Y. He, P. Li, K. Wang, J. Wei, D. Wu, and H. Zhu, "Effect of different gel electrolytes on graphene based solid-state supercapacitors", RSC Adv., 00, 1-3 (2014).
  26. D. J. Kim, J. K. Kim, J. H. Lee, H. H. Cho, Y. S. Bae, and J. H. Kim, "Scalable and bendable organized mesoporous TiN films templated by using a dual-functional amphiphilic graft copolymer for solid supercapacitors", J. Mater. Chem. A, 4, 12497 (2016). https://doi.org/10.1039/C6TA03475F