DOI QR코드

DOI QR Code

Highly-permeable Mixed Matrix Membranes Based on SBS-g-POEM Copolymer, ZIF-8 and Ionic Liquid

SBS-g-POEM 공중합체, ZIF-8, 이온성 액체에 기반한 고투과성 혼합 매질 분리막

  • Kang, Dong A (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Kihoon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 강동아 (연세대학교 화공생명공학과) ;
  • 김기훈 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2019.02.20
  • Accepted : 2019.02.26
  • Published : 2019.02.28

Abstract

In this paper, we developed mixed matrix membranes (MMMs) consisting of SBS-g-POEM block-graft copolymer, ionic liquid (EMIMTFSI) and ZIF-8 nanoparticles to separate a $CO_2/N_2$ gas pair. The SBS-g-POEM is a rubbery block-graft copolymer synthesized through low-cost free-radical polymerization. The EMIMTFSI was dissolved into the SBS-g-POEM matrix and solution synthesized ZIF-8 nanoparticles were also dispersed into the copolymer matrix. The physico-chemical properties of manufactured membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD), which showed that the components were compatible with each other. The gas separation performance was confirmed by time-lag measurements showing $CO_2$ permeability of 537.0 barrer and $CO_2/N_2$ selectivity of 15.2. The result represents the EMIMTFSI and ZIF-8 nanoparticles improves the gas permeability more than two-times, without significantly sacrificing the $CO_2/N_2$ selectivity.

본 논문에서는 SBS-g-POEM 블록-그래프트 공중합체, 이온성 액체(EMIMTFSI) 및 ZIF-8 나노 입자를 사용하여 $CO_2/N_2$ 기체를 분리하기 위한 혼합 매질 분리막(MMMs)을 개발하였다. SBS-g-POEM은 낮은 비용이 드는 자유 라디칼 중합법을 통해 합성된 유연한 블록-그래프트 공중합체이다. EMIMTFSI는 SBS-g-POEM 매트릭스에 용해시켰으며, 합성된 ZIF-8 나노 입자들 역시 공중합체의 매트릭스에 분산시켰다. 제조된 시료들의 특성은 푸리에 변환 적외 분광법(FT-IR), 시차 주사 열량계(DSC), 주사 전자 현미경(SEM), X선 회절 분석(XRD)을 통해 확인하였으며, 분석 결과 각 성분들은 서로 간의 좋은 혼화성을 나타내었다. 기체 분리 성능은 time-lag measurements를 통해 확인되었으며, 537.0 barrer의 $CO_2$ 투과도와 15.2의 $CO_2/N_2$ 선택도를 나타내었다. 이를 통해 첨가된 EMIMTFSI와 ZIF-8 나노 입자는 $CO_2/N_2$ 선택도를 크게 희생시키지 않고 기체 투과도를 두 배 이상 향상시키는 것으로 확인되었다.

Keywords

References

  1. N. Alvarez-Gutierrez, M. Gil, F. Rubiera, and C. Pevida, "Kinetics of $CO_2$ adsorption on cherry stone-based carbons in $CO_2/CH_4$ separations", Chem. Eng. J., 307, 249 (2017). https://doi.org/10.1016/j.cej.2016.08.077
  2. J. H. Choi, Y. E. Kim, S. C. Nam, S. H. Yun, Y. I. Yoon, and J.-H. Lee, "$CO_2$ absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups", Korean J. Chem. Eng., 33, 3222 (2016). https://doi.org/10.1007/s11814-016-0180-9
  3. S. Khalili, B. Khoshandam, and M. Jahanshahi, "A comparative study of $CO_2$ and $CH_4$ adsorption using activated carbon prepared from pine cone by phosphoric acid activation", Korean J. Chem. Eng., 33, 2943 (2016). https://doi.org/10.1007/s11814-016-0138-y
  4. J. M. MacInnes, A. A. Ayash, and G. R. Dowson, "$CO_2$ absorption using diethanolamine-water solutions in a rotating spiral contactor", Chem. Eng. J., 307, 1084 (2017). https://doi.org/10.1016/j.cej.2016.08.123
  5. S. Zhang, W. Cai, J. Yu, C. Ji, and N. Zhao, "A facile one-pot cation-anion double hydrolysis approach to the synthesis of supported $MgO/{\gamma}-Al_2O_3$ with enhanced adsorption performance towards $CO_2$", Chem. Eng. J., 310, 216 (2017). https://doi.org/10.1016/j.cej.2016.10.114
  6. L. C. Tome, D. J. Patinha, R. Ferreira, H. Garcia, C. Silva Pereira, C. S. Freire, L. P. N. Rebelo, and I. M. Marrucho, "Cholinium-based supported ionic liquid membranes: A sustainable route for carbon dioxide separation", ChemSusChem, 7, 110 (2014). https://doi.org/10.1002/cssc.201300613
  7. N. U. Kim, B. J. Park, M. S. Park, and J. H. Kim, "Effect of PVP on $CO_2/N_2$ separation performance of self-crosslinkable P(GMA-g-PPG)-co-POEM) membranes", Membr. J., 28, 113 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.2.113
  8. C. H. Park, J. P. Jung, J. H. Lee, and J. H. Kim, "Enhancement of $CO_2$ permeance by incorporating CaCO3 in mixed matrix membranes", Membr. J., 28, 55 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.55
  9. R. Patel, J. T. Park, M. S. Park, and J. H. Kim, "Synthesis, morphology and permeation properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) comb copolymer", Membr. J., 27, 499 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.6.499
  10. B. M. Sass, H. Farzan, R. Prabhakar, J. Gerst, J. Sminchak, M. Bhargava, B. Nestleroth, and J. Figueroa, "Considerations for treating impurities in oxy-combustion flue gas prior to sequestration", Energy Procedia, 1, 535 (2009). https://doi.org/10.1016/j.egypro.2009.01.071
  11. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  12. M. Rezakazemi, A. E. Amooghin, M. M. MontazerRahmati, A. F. Ismail, and T. Matsuura, "State-of-the-art membrane based $CO_2$ separation using mixed matrix membranes (MMMs): An overview on current status and future directions", Prog. Polym. Sci., 39, 817 (2014). https://doi.org/10.1016/j.progpolymsci.2014.01.003
  13. M. Ahmadi, S. Janakiram, Z. Dai, L. Ansaloni, and L. Deng, "Performance of mixed matrix membranes containing porous two-dimensional (2D) and three-dimensional (3D) fillers for $CO_2$ Separation: A review", Membranes, 8, 50 (2018). https://doi.org/10.3390/membranes8030050
  14. J. Dechnik, J. Gascon, C. J. Doonan, C. Janiak, and C. J. Sumby, "Sumby, mixed-matrix membranes", Angew. Chem. Int. Ed., 56, 9292 (2017). https://doi.org/10.1002/anie.201701109
  15. R. Lin, B. V. Hernandez, L. Ge, and Z. Zhu, "Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces", J. Mater. Chem. A, 6, 293 (2018). https://doi.org/10.1039/C7TA07294E
  16. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'keeffe, and O. M. Yaghi, "High-throughput synthesis of zeolitic imidazolate frameworks and application to $CO_2$ capture", Science, 319, 939 (2008). https://doi.org/10.1126/science.1152516
  17. B. Wang, A. P. Cote, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, "Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs", Nature, 453, 207 (2008). https://doi.org/10.1038/nature06900
  18. C.-W. Tsai, J. Niemantsverdriet, and E. H. Langner, "Enhanced $CO_2$ adsorption in nano-ZIF-8 modified by solvent assisted ligand exchange", Micropor. Mesopor. Mater., 262, 98 (2018). https://doi.org/10.1016/j.micromeso.2017.11.024
  19. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, "A review of electrolyte materials and compositions for electrochemical supercapacitors", Chem. Soc. Rev., 44, 7484 (2015). https://doi.org/10.1039/C5CS00303B
  20. J. Y. Lim, J. K. Kim, C. S. Lee, J. M. Lee, and J. H. Kim, "Hybrid membranes of nanostructrual copolymer and ionic liquid for carbon dioxide capture", Chem. Eng. J., 322, 254 (2017). https://doi.org/10.1016/j.cej.2017.04.030
  21. J. Y. Lim, J. H. Lee, M. S. Park, J.-H. Kim, and J. H. Kim, "Hybrid membranes based on ionic-liquid-functionalized poly (vinyl benzene chloride) beads for $CO_2$ capture", J. Membr. Sci., 572, 365 (2019). https://doi.org/10.1016/j.memsci.2018.11.030
  22. H. Abe, A. Takeshita, H. Sudo, K. Akiyama, and H. Kishimura, "$CO_2$ capture at room temperature and ambient pressure: Isomer effect in room temperature ionic liquid/propanol solutions", Green Sustain. Chem., 6, 116 (2016). https://doi.org/10.4236/gsc.2016.62011
  23. L. Hao, P. Li, T. Yang, and T.-S. Chung, "Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion $CO_2$ capture", J. Membr. Sci., 436, 221 (2013). https://doi.org/10.1016/j.memsci.2013.02.034
  24. W. S. Chi, S. J. Kim, S. J. Lee, Y. S. Bae, and J. H. Kim, "Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach", ChemSusChem, 8, 650 (2015). https://doi.org/10.1002/cssc.201402677
  25. S. Hwang, W. S. Chi, S. J. Lee, S. H. Im, J. H. Kim, and J. Kim, "Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for $CO_2/CH_4$ gas separation", J. Membr. Sci., 480, 11 (2015). https://doi.org/10.1016/j.memsci.2015.01.038
  26. J. F. Masson, L. Pelletier, and P. Collins, "Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen", J. Appl. Polym. Sci., 79, 1034 (2001). https://doi.org/10.1002/1097-4628(20010207)79:6<1034::AID-APP60>3.0.CO;2-4
  27. O. Van Asselen, I. Van Casteren, J. Goossens, and H. Meijer, "Deformation behavior of triblock copolymers based on polystyrene: An FT-IR spectroscopy study", in: Macromolecular Symposia, Wiley Online Library, 205, 85-94 (2004).
  28. J. H. Lee, J. Y. Lim, M. S. Park, and J. H. Kim, "Improvement in the $CO_2$ permeation properties of high-molecular-weight poly (ethylene oxide): Use of amine-branched poly (amidoamine) dendrimer", Macromolecules, 51, 8800 (2018). https://doi.org/10.1021/acs.macromol.8b02037