DOI QR코드

DOI QR Code

Gas Permeability through Mixed Matrix Membrane of Poly(dimethylsiloxane) with Aluminosilicate Hollow Nanoparticles

알루미노규산염 나노입자를 이용한 Poly(dimethylsiloxane) 복합매질 분리막의 기체투과 특성

  • Fang, Xiaoyi (Department of Environmental Engineering and Energy, Myongji University) ;
  • Jung, Bumsuk (Department of Environmental Engineering and Energy, Myongji University)
  • 방효질 (명지대학교 환경에너지공학과) ;
  • 정범석 (명지대학교 환경에너지공학과)
  • Received : 2019.02.24
  • Accepted : 2019.02.26
  • Published : 2019.02.28

Abstract

In order to improve gas separation properties of polymeric membranes which have been widely applied in the industry field, aluminosilicate hollow nanoparticles named as allophanes were synthesized by sol-gel method and formulated in Poly(dimethylsiloxane) (PDMS) matrix to investigate the gas separation properties of PDMS membrane. Transmission electron microscope (TEM), Energy dispersive X-ray analysis (EDX), X-ray diffractometer (XRD), Surface area and pore size analyzer (BET) and Fourier transform infrared spectrophotometer (FTIR) were carried out to characterize the synthetic allophanes. Then the PDMS mixed matrix membranes were prepared by adding different volume fraction of allophanes. To examine the effect of allophanes addition in PDMS matrix using unmodified allophane and modified ones, the gas permeation experiments were performed using oxygen, nitrogen, methane and carbon dioxide. As the volume fraction of modified allophane increased up to 4.05 Vol% the permeability of four test gases through PDMS mixed matrix membranes increased. Also, the selectivity of $O_2/N_2$ and $CO_2/CH_4$ increased with the contents of the modified allophane. Further improvement of gas separation properties of PDMS mixed matrix membranes containing higher volume percent of allophanes can be expected as long as well dispersion of allophanes in PDMS matrix can be achieved for better PDMS membranes.

분리막 소재의 투과도와 선택도 사이의 trade-off 관계로 인해 여전히 많은 연구가 필요하다. 특히 고분자 분리막에 무기물 나노입자가 들어가 있을 때, 기체투과 거동의 학문적 이해는 여전히 부족하다. 따라서 본 연구에서는 분리막 소재로 가장 많이 사용되는 PDMS에 2~5 nm의 기공을 가지고 있으며 직경이 약 5 nm 크기의 aluminosilicate hollow nanoparticles인 allophane을 이용하여 복합매질 분리막을 제조하여 기체투과특성을 연구하였다. 대표적인 분리막 소재인 PDMS에 친수성 allophane, 그리고 나노입자에 undecylenic acid로 표면을 개질한 allophane을 막 내부에 고르게 분산시켜 함량 별로 복합매질 분리막을 제조하였다. 나노입자가 분산된 혼합매질 분리막 내에서 기체의 투과 특성을 파악하고, 이에 따른 기체투과 거동과 나노입자가 가지고 있는 기공의 역할을 평가하고자 하였다. 표면개질된 allophane을 첨가함에 따라 기체 투과도와 산소/질소 그리고 이산화탄소/메탄의 선택도가 동시에 점진적으로 향상되는 결과를 얻었다.

Keywords

References

  1. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  2. M. Rezakazemi, A. Ebadi Amooghin, M. M. Montazer-Rahmati, A. F. Ismail, and T. Matsuura, "State-of-the-art membrane based $CO_2$separation using mixed matrix membranes (MMMs): An overview on current status and future directions", Prog. Polym. Sci., 39, 817 (2014). https://doi.org/10.1016/j.progpolymsci.2014.01.003
  3. T.-S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.008
  4. G. Dong, H. Li, and V. Chen, "Challenges and opportunities for mixed-matrix membranes for gas separation", J. Mater. Chem. A, 1, 4610 (2013). https://doi.org/10.1039/c3ta00927k
  5. S. Kanehashi, G. Q. Chen, C. A. Scholes, B. Ozcelik, C. Hua, L. Ciddor, P. D. Southon, D. M. D'Alessandro, and S. E. Kentish, "Enhancing gas permeability in mixed matrix membranes through tuning the nanoparticle properties", J. Memb. Sci., 482, 49 (2015). https://doi.org/10.1016/j.memsci.2015.01.046
  6. G. M. Nisola, A. B. Beltran, D. M. Sim, D. Lee, B. Jung, and W.-J. Chung, "Dimethyl silane-modified silica in polydimethylsiloxane as gas permeation mixed matrix membrane" J. Polym. Res., 18, 2415 (2011). https://doi.org/10.1007/s10965-011-9655-x
  7. S. Kim, E. Marand, J. Ida, and V. V. Guliants, "Polysulfone and mesoporous molecular sieve MCM-48 mixed matrix membranes for gas separation", Chem. Mat., 18, 1149 (2006). https://doi.org/10.1021/cm052305o
  8. B. D. Reid, F. A. Ruiz-Trevino, I. H. Musselman, K. J. Balkus, and J. P. Ferraris, "Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41", Chem. Mat., 13, 2366 (2001). https://doi.org/10.1021/cm000931+
  9. A. F. Ismail, P. S. Goh, S. M. Sanip, and M. Aziz, "Transport and separation properties of carbon nanotube-mixed matrix membrane", Sep. Purif. Technol., 70, 12 (2009). https://doi.org/10.1016/j.seppur.2009.09.002
  10. M. Anson, J. Marchese, E. Garis, N. Ochoa, and C. Pagliero, "ABS copolymer-activated carbon mixed matrix membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 243, 19 (2004). https://doi.org/10.1016/j.memsci.2004.05.008
  11. T.-H. Bae, J. S. Lee, W. Qiu, W. J. Koros, C. W. Jones, and S. Nair, "A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals", Angew. Chem. Int. Ed., 49, 9863-9866 (2010). https://doi.org/10.1002/anie.201006141
  12. Q. Song, S. K. Nataraj, M. V. Roussenova, J. C. Tan, D. J. Hughes, W. Li, P. Bourgoin, M. A. Alam, A. K. Cheetham, S. A. Al-Muhtaseb, and E. Sivaniah, "Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation", Energy Environ. Sci., 5, 8359 (2012). https://doi.org/10.1039/c2ee21996d
  13. S. Japip, H. Wang, Y. Xiao, and T. S. Chung, "Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation", J. Membr. Sci., 467, 162 (2014). https://doi.org/10.1016/j.memsci.2014.05.025
  14. H. Zhao, Z. Jin, H. Su, J. Zhang, X. Yao, H. Zhao, and G. Zhu, "Target synthesis of a novel porous aromatic framework and its highly selective separation of $CO_2/CH_4$, Chem. Comm., 49, 2780 (2013). https://doi.org/10.1039/c3cc38474h
  15. F. Ohashi, S.-I. Wada, M. Suzuki, M. Maeda, and S. Tomura, "Synthetic allophane from high-concentration solutions: Nanoengineering of the porous solid", Clay Minerals, 37, 451 (2002). https://doi.org/10.1180/0009855023730052
  16. S. J. Van Der Gaast, K. Wada, S.-I. Wada, and Y. Kakuto, "Small-angle x-ray powder diffraction, morphology, and structure of allophane and imogolite", Clays and Clay Minerals, 3, 237 (1985).
  17. G.-G. Lindner, H. Nakazawa, and S. Hayashi, "Hollow nanospheres, allophanes 'All-organic' synthesis and characterization", Micropor. Mesopor. Mat., 21, 381 (1998). https://doi.org/10.1016/S1387-1811(98)00002-X
  18. C. Maxwell, Treatise on Electricity arid Magnetism, Oxford University Press, London (1873).
  19. J. D. Evans, D. M. Huang, M. R. Hill, C. J. Sumby, A. W. Thornton, and C. J. Doonan, "Feasibility of mixed matrix membrane gas separations employing porous organic cages", J. Phys. Chem. C, 118, 1523 (2013). https://doi.org/10.1021/jp4079184
  20. H. Vinh-Thang and S. Kaliaguine, "Predictive models for mixed-matrix membrane performance: A review", Chem. Rev., 113, 4980 (2013). https://doi.org/10.1021/cr3003888
  21. A. E. Amooghina, S. Mashhadikhana, H. Sanaeepura, A. Moghadassia, T. Matsuurab, and S. Ramakrishna, "Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient $CO_2$ separation", Prog. Mat. Sci., 102, 222 (2019). https://doi.org/10.1016/j.pmatsci.2018.11.002