DOI QR코드

DOI QR Code

Bacillus subtilis Spore Surface Display Technology: A Review of Its Development and Applications

  • Zhang, Guoyan (School of Food and Biological Engineering, Jiangsu University) ;
  • An, Yingfeng (College of Biosciences and Biotechnology, Shenyang Agricultural University) ;
  • Zabed, Hossain M. (School of Food and Biological Engineering, Jiangsu University) ;
  • Guo, Qi (School of Food and Biological Engineering, Jiangsu University) ;
  • Yang, Miaomiao (School of Food and Biological Engineering, Jiangsu University) ;
  • Yuan, Jiao (School of Food and Biological Engineering, Jiangsu University) ;
  • Li, Wen (School of Food and Biological Engineering, Jiangsu University) ;
  • Sun, Wenjin (School of Food and Biological Engineering, Jiangsu University) ;
  • Qi, Xianghui (School of Food and Biological Engineering, Jiangsu University)
  • Received : 2018.07.13
  • Accepted : 2018.12.11
  • Published : 2019.02.28

Abstract

Bacillus subtilis spore surface display (BSSD) technology is considered to be one of the most promising approaches for expressing heterologous proteins with high activity and stability. Currently, this technology is used for various purposes, such as the production of enzymes, oral vaccines, drugs and multimeric proteins, and the control of environmental pollution. This paper presents an overview of the latest developments in BSSD technology and its application in protein engineering. Finally, the major limitations of this technology and future directions for its research are discussed.

Keywords

References

  1. GP S. 1985. Filamentous fusion phage novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315-1317. https://doi.org/10.1126/science.4001944
  2. Lindborg M, Magnusson CG, Zargari A, Schmidt M, Scheynius A, Crameri R, et al. 1999. Selective cloning of allergens from the skin colonizing yeast Malassezia furfur by phage surface display technology. J. Invest. Dermatol. 113: 156-161. https://doi.org/10.1046/j.1523-1747.1999.00661.x
  3. ET B, KD W. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnol. 15: 553-557. https://doi.org/10.1038/nbt0697-553
  4. Hu S, Kong J, Sun Z, Han L, Kong W, Yang P. 2011. Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein. Microb. Cell Fact. 10: 86-86. https://doi.org/10.1186/1475-2859-10-86
  5. JinaCheon, Bokim S, Wonpark S, Kwonhan J, Pil Kim. 2009. Characterization of L-arabinose isomerase in Bacillus subtilis, a GRAS host, for the production of edible tagatose. Food Biotechnol. 23: 8-16. https://doi.org/10.1080/08905430802671873
  6. Isticato R, Cangiano G, Tran HT, Ciabattini A, Medaglini D, Oggioni MR, et al. 2001. Surface display of recombinant proteins on Bacillus subtilis spores. J. Bacteriol. 183: 6294-6301. https://doi.org/10.1128/JB.183.21.6294-6301.2001
  7. Wang H, Wang Y, Yang R. 2017. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future. Appl. Microbiol. Biotechnol. 101: 933-949. https://doi.org/10.1007/s00253-016-8080-9
  8. Isticato R, Ricca E. 2014. Spore Surface Display. Microbiol. Spectr. 2(5).
  9. Tan IS, Ramamurthi KS. 2014. Spore formation in Bacillus subtilis. Environ. Microbiol. Rep. 6: 212-225. https://doi.org/10.1111/1758-2229.12130
  10. Setlow P. 2007. I will survive: DNA protection in bacterial spores. Trends Microbiol. 15: 172-180. https://doi.org/10.1016/j.tim.2007.02.004
  11. Moeller R, Schuerger AC, Reitz G, Nicholson WL. 2012. Protective role of spore structural components in determining Bacillus subtilis spore resistance to simulated mars surface conditions. Appl. Environ. Microbiol. 78: 8849-8853. https://doi.org/10.1128/AEM.02527-12
  12. Guo Q, An Y, Yun J, Yang M, Magocha TA, Zhu J, et al. 2018. Enhanced d-tagatose production by spore surface-displayed l -arabinose isomerase from isolated Lactobacillus brevis PC16 and biotransformation. Bioresour. Technol. 247: 940-946. https://doi.org/10.1016/j.biortech.2017.09.187
  13. Negri A, Potocki W, Iwanicki A, Obuchowski M, Hinc K. 2013. Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. J. Med. Microbiol. 62: 1379-1385. https://doi.org/10.1099/jmm.0.057372-0
  14. He W, Jiang B, Mu W, Zhang T. 2016. Production of d-allulose with d-psicose 3-epimerase expressed and displayed on the surface of Bacillus subtilis spores. J. Agric. Food Chem. 64: 7201-7207. https://doi.org/10.1021/acs.jafc.6b03347
  15. Potot S, Serra CR, Henriques AO, Schyns G. 2010. Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier. Appl. Environ. Microbiol. 76: 5926-5933. https://doi.org/10.1128/AEM.01103-10
  16. Wang H, Yang R, Hua X, Zhang W, Zhao W. 2016. Production using the CotX-mediated spore-displayed beta-galactosidase as a biocatalyst. J. Microbiol. Biotechnol. 26: 1267-1277. https://doi.org/10.4014/jmb.1602.02036
  17. Wang H, Yang R, Hua X, Zhao W, Zhang W. 2015. Functional display of active $\beta$-galactosidase on Bacillus subtilis spores using crust proteins as carriers. Food Sci. Biotechnol. 24: 1755-1759. https://doi.org/10.1007/s10068-015-0228-3
  18. Hwang BY, Pan JG, Kim BG, Kim JH. 2013. Functional display of active tetrameric beta-galactosidase using Bacillus subtilis spore display system. J. Nanosci. Nanotechnol. 13: 2313-2319. https://doi.org/10.1166/jnn.2013.6889
  19. Hosseini-Abari A, Kim BG, Lee SH, Emtiazi G, Kim W, Kim JH. 2016. Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein. J. Basic Microbiol. 56: 1331-1337.. https://doi.org/10.1002/jobm.201600203
  20. Iwanicki A, Piatek I, Stasilojc M, Grela A, Lega T, Obuchowski M, et al. 2014. A system of vectors for Bacillus subtilis spore surface display. Microbial. Cell Fact. 13: 30. https://doi.org/10.1186/1475-2859-13-30
  21. Gupta N, Farinas ET. 2010. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Protein Eng. Des. Sel. 23: 679-682. https://doi.org/10.1093/protein/gzq036
  22. Gwak S, Almirall JR. 2015. Rapid screening of 35 new psychoactive substances by ion mobility spectrometry (IMS) and direct analysis in real time (DART) coupled to quadrupole time-of-flight mass spectrometry (QTOF-MS). Drug Test. Anal. 7: 884-893. https://doi.org/10.1002/dta.1783
  23. Hinc K, Iwanicki A, Obuchowski M. 2013. New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis. Microb. Cell Fact. 12: 22. https://doi.org/10.1186/1475-2859-12-22
  24. Huang Z, Li G, Zhang C, Xing XH. 2016. A study on the effects of linker flexibility on acid phosphatase PhoC-GFP fusion protein using a novel linker library. Enzyme Microb. Technol. 83: 1-6. https://doi.org/10.1016/j.enzmictec.2015.11.002
  25. Potocki W, Negri A, Peszynska-Sularz G, Hinc K, Obuchowski M, Iwanicki A. 2017. The combination of recombinant and non-recombinant Bacillus subtilis spore display technology for presentation of antigen and adjuvant on single spore. Microb. Cell Fact. 16: 151. https://doi.org/10.1186/s12934-017-0765-y
  26. Duc LH, Hong HA, Fairweather N, Ricca E, Cutting SM. 2003. Bacterial Spores as Vaccine Vehicles. Infect. Immun. 71: 2810-2818. https://doi.org/10.1128/IAI.71.5.2810-2818.2003
  27. Uyen NQ, Hong HA, Cutting SM. 2007. Enhanced immunisation and expression strategies using bacterial spores as heat-stable vaccine delivery vehicles. Vaccine 25: 356-365. https://doi.org/10.1016/j.vaccine.2006.07.025
  28. Ciabattini A, Parigi R, Isticato R, Oggioni MR, Pozzi G. 2004. Oral priming of mice by recombinant spores of Bacillus subtilis. Vaccine 22: 4139-4143. https://doi.org/10.1016/j.vaccine.2004.05.001
  29. Nguyen AT, Pham CK, Pham HT, Pham HL, Nguyen AH, Dang LT, et al. 2014. Bacillus subtilis spores expressing the VP28 antigen: a potential oral treatment to protect Litopenaeus vannamei against white spot syndrome. FEMS Microbiol Lett. 358: 202-208. https://doi.org/10.1111/1574-6968.12546
  30. Sun H, Lin Z, Zhao L, Chen T, Shang M, Jiang H, et al. 2018. Bacillus subtilis spore with surface display of paramyosin from Clonorchis sinensis potentializes a promising oral vaccine candidate. Parasit. Vectors. 11: 156. https://doi.org/10.1186/s13071-018-2757-0
  31. Wang X, Chen W, Tian Y, Mao Q, Lv X, Shang M, et al. 2014. Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate. Vaccine 32: 1338-1345. https://doi.org/10.1016/j.vaccine.2014.01.039
  32. Zhou Z, Xia H, Hu X, Huang Y, Li Y, Li L, et al. 2008. Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine 26: 1817-1825. https://doi.org/10.1016/j.vaccine.2008.02.015
  33. Li L, Hu X, Wu Z, Xiong S, Zhou Z, Wang X, et al. 2009. Immunogenicity of self-adjuvanticity oral vaccine candidate based on use of Bacillus subtilis spore displaying Schistosoma japonicum 26 KDa GST protein. Parasitol Res. 105: 1643-1651. https://doi.org/10.1007/s00436-009-1606-7
  34. Feng F, Hu P, Chen L, Tang Q, Lian C, Yao Q, et al. 2013. Display of human proinsulin on the Bacillus subtilis spore surface for oral administration. Curr. Microbiol. 67: 1-8. https://doi.org/10.1007/s00284-013-0325-6
  35. Cao Y-G, Li Z-H, Yue Y-Y, Song N-N, Peng L, Wang L-X, et al. 2013. Construction and evaluation of a novel Bacillus subtilis spores-based enterovirus 71 vaccine. J. Appl. Biomed. 11: 105-113. https://doi.org/10.2478/v10136-012-0032-9
  36. Zhao G, Miao Y, Guo Y, Qiu H, Sun S, Kou Z, et al. 2014. Development of a heat-stable and orally delivered recombinant M2e-expressing B. subtilis spore-based influenza vaccine. Hum. Vaccin Immunother. 10: 3649-3658. https://doi.org/10.4161/hv.36122
  37. Yuan Y, Feng F, Chen L, Yao Q, Chen K. 2013. Surface display of Acetobacter pasteurianus AdhA on Bacillus subtilis spores to enhance ethanol tolerance for liquor industrial potential. Eur. Food Res. Technol. 238: 285-293. https://doi.org/10.1007/s00217-013-2100-0
  38. Falahati-Pour SK, Lotfi AS, Ahmadian G, Baghizadeh A. 2015. Covalent immobilization of recombinant organophosphorus hydrolase on spores of Bacillus subtilis. J. Appl. Microbiol. 118: 976-988. https://doi.org/10.1111/jam.12744
  39. Hinc K, Ghandili S, Karbalaee G, Shali A, Noghabi KA, Ricca E, et al. 2010. Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Res. Microbiol. 161: 757-764. https://doi.org/10.1016/j.resmic.2010.07.008
  40. Cho EA, Seo J, Lee DW, Pan JG. 2011. Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme Microb. Technol. 49: 100-104. https://doi.org/10.1016/j.enzmictec.2011.03.005
  41. Hwang BY, Kim BG, Kim JH. 2011. Bacterial surface display of a co-factor containing enzyme, $\omega$-transaminase from Vibrio fluvialis using the Bacillus subtilis spore display system. Biosci.Biotechnol. Biochem. 75: 1862-1865. https://doi.org/10.1271/bbb.110307
  42. Kim JH, Lee CS, Kim BG. 2005. Spore-displayed streptavidin: a live diagnostic tool in biotechnology. Biochem. Biophys. Res. Commun. 331: 210-214. https://doi.org/10.1016/j.bbrc.2005.03.144
  43. Kwon SJ, Jung HC, Pan JG. 2007. Transgalactosylation in a water-solvent biphasic reaction system with $\beta$-galactosidase displayed on the surfaces of Bacillus subtilis spores. Appl. Environ. Microbiol. 73: 2251-2256. https://doi.org/10.1128/AEM.01489-06
  44. Rostami A, Hinc K, Goshadrou F, Shali A, Bayat M, Hassanzadeh M, et al. 2017. Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. Pestic Biochem. Physiol. 140: 17-23. https://doi.org/10.1016/j.pestbp.2017.05.008
  45. Duc le H, Hong HA, Atkins HS, Flick-Smith HC, Durrani Z, Rijpkema S, et al. 2007. Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine 25: 346-355. https://doi.org/10.1016/j.vaccine.2006.07.037
  46. Hoang TH, Hong HA, Clark GC, Titball RW, Cutting SM. 2008. Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infect. Immun. 76: 5257-5265. https://doi.org/10.1128/IAI.00686-08
  47. Hinc K, Isticato R, Dembek M, Karczewska J, Iwanicki A, Peszynska-Sularz G, et al. 2010. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb. Cell Fact. 9: 2. https://doi.org/10.1186/1475-2859-9-2
  48. Permpoonpattana P, Hong HA, Phetcharaburanin J, Huang JM, Cook J, Fairweather NF, et al. 2011. Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B. Infect. Immun. 79: 2295-2302. https://doi.org/10.1128/IAI.00130-11
  49. Tavares Batista M, Souza RD, Paccez JD, Luiz WB, Ferreira EL, Cavalcante RC, et al. 2014. Gut adhesive Bacillus subtilis spores as a platform for mucosal delivery of antigens. Infect. Immun. 82: 1414-1423. https://doi.org/10.1128/IAI.01255-13
  50. Sibley L, Reljic R, Radford DS, Huang JM, Hong HA, Cranenburgh RM, et al. 2014. Recombinant Bacillus subtilis spores expressing MPT64 evaluated as a vaccine against tuberculosis in the murine model. FEMS Microbiol. Lett. 358: 170-179. https://doi.org/10.1111/1574-6968.12525
  51. Nguyen QA, Schumann W. 2014. Use of IPTG-inducible promoters for anchoring recombinant proteins on the Bacillus subtilis spore surface. Protein Expr. Purif. 95: 67-76. https://doi.org/10.1016/j.pep.2013.11.018
  52. Hinc K, Stasilojc M, Piatek I, Peszynska-Sularz G, Isticato R, Ricca E, et al. 2014. Mucosal adjuvant activity of IL-2 presenting spores of bacillus subtilis in a murine model of Helicobacter pylori vaccination. PLoS One 9: e95187. https://doi.org/10.1371/journal.pone.0095187
  53. Chen H, Zhang T, Jia J, Vastermark A, Tian R, Ni Z, et al. 2015. Expression and display of a novel thermostable esterase from Clostridium thermocellum on the surface of Bacillus subtilis using the CotB anchor protein. J. Ind. Microbiol. Biotechnol. 42: 1439-1448. https://doi.org/10.1007/s10295-015-1676-8
  54. Chen H, Tian R, Ni Z, Zhang Q, Zhang T, Chen Z, et al. 2015. Surface display of the thermophilic lipase Tm1350 on the spore of Bacillus subtilis by the CotB anchor protein. Extremophiles 19: 799-808. https://doi.org/10.1007/s00792-015-0755-0
  55. Mauriello EM, Duc le H, Isticato R, Cangiano G, Hong HA, De Felice M, et al. 2004. Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 22: 1177-1187. https://doi.org/10.1016/j.vaccine.2003.09.031
  56. Li G, Tang Q, Chen H, Yao Q, Ning D, Chen K. 2011. Display of Bombyx mori nucleopolyhedrovirus GP64 on the Bacillus subtilis spore coat. Curr. Microbiol. 62: 1368-1373. https://doi.org/10.1007/s00284-011-9867-7
  57. Wang N, Chang C, Yao Q, Li G, Qin L, Chen L, et al. 2011. Display of Bombyx mori alcohol dehydrogenases on the Bacillus subtilis spore surface to enhance enzymatic activity under adverse conditions. PLoS One 6: e21454. https://doi.org/10.1371/journal.pone.0021454
  58. Mao L, Jiang S, Li G, He Y, Chen L, Yao Q, et al. 2012. Surface display of human serum albumin on Bacillus subtilis spores for oral administration. Curr. Microbiol. 64: 545-551. https://doi.org/10.1007/s00284-012-0109-4
  59. Tavassoli S, Hinc K, Iwanicki A, Obuchowski M, Ahmadian G. 2013. Investigation of spore coat display of Bacillus subtilis $\beta$-galactosidase for developing of whole cell biocatalyst. Arch. Microbiol. 195: 197-202. https://doi.org/10.1007/s00203-013-0867-9
  60. Lian C, Zhou Y, Feng F, Chen L, Tang Q, Yao Q, et al. 2014. Surface display of human growth hormone on Bacillus subtilis spores for oral administration. Curr. Microbiol. 68: 463-471. https://doi.org/10.1007/s00284-013-0500-9
  61. Zhou Z, Gong S, Li XM, Yang Y, Guan R, Zhou S, et al. 2015. Expression of Helicobacter pylori urease B on the surface of Bacillus subtilis spores. J. Med. Microbiol. 64: 104-110. https://doi.org/10.1099/jmm.0.076430-0
  62. Dai X, Liu M, Pan K, Yang J. 2018. Surface display of OmpC of Salmonella serovar Pullorum on Bacillus subtilis spores. PLoS One 13: e0191627. https://doi.org/10.1371/journal.pone.0191627
  63. Gao C, Xu X, Zhang X, Che B, Ma C, Qiu J, et al. 2011. Chemoenzymatic synthesis of N-acetyl-D-neuraminic acid from N-acetyl-D-glucosamine by using the spore surface-displayed N-acetyl-D-neuraminic acid aldolase. Appl. Environ. Microbiol. 77: 7080-7083. https://doi.org/10.1128/AEM.05601-11
  64. Qu Y, Wang J, Zhang Z, Shi S, Li D, Shen W, et al. 2014. Catalytic transformation of HODAs using an efficient meta-cleavage product hydrolase-spore surface display system. J. Mol. Catal. 102: 204-210. https://doi.org/10.1016/j.molcatb.2014.02.014
  65. Chen H, Chen Z, Ni Z, Tian R, Zhang T, Jia J, et al. 2016. Display of Thermotoga maritima MSB8 nitrilase on the spore surface of Bacillus subtilis using out coat protein CotG as the fusion partner. J. Mol. Catal. 123: 73-80. https://doi.org/10.1016/j.molcatb.2015.11.002
  66. Xu X, Gao C, Zhang X, Che B, Ma C, Qiu J, et al. 2011. Production of N-acetyl-D-neuraminic acid by use of an efficient spore surface display system. Appl. Environ. Microbiol. 77: 3197-3201. https://doi.org/10.1128/AEM.00151-11
  67. Liu Y, Li S, Xu H, Wu L, Xu Z, Liu J, et al. 2014. Efficient production of D-tagatose using a food-grade surface display system. J. Agric. Food Chem. 62: 6756-6762. https://doi.org/10.1021/jf501937j
  68. Wittmann A, Suess B. 2012. Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators. FEBS Lett. 586: 2076-2083. https://doi.org/10.1016/j.febslet.2012.02.038
  69. Zhang Z, Liu J, Fan J, Wang Z, Li L. 2018. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal. Chim. Acta 1009: 65-72. https://doi.org/10.1016/j.aca.2018.01.008
  70. Fantino JR, Barras F, Denizot F. 2009. Sposensor: a whole-bacterial biosensor that uses immobilized Bacillus subtilis spores and a one-step incubation/detection process. J. Mol. Microbiol. Biotechnol. 17: 90-95. https://doi.org/10.1159/000206634
  71. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F. 2014. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 24: 142-153. https://doi.org/10.1101/gr.161638.113
  72. Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. 2014. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15: 554. https://doi.org/10.1186/s13059-014-0554-4

Cited by

  1. Comparison of the stability of eGFP displayed on the Bacillus subtilis spore surface using CotB and C-terminally truncated CotB proteins as an anchoring motif under extreme conditions vol.62, pp.1, 2019, https://doi.org/10.1186/s13765-019-0448-y
  2. Progress in research and application development of surface display technology using Bacillus subtilis spores vol.104, pp.6, 2020, https://doi.org/10.1007/s00253-020-10348-x
  3. Progress in research and application development of surface display technology using Bacillus subtilis spores vol.104, pp.6, 2020, https://doi.org/10.1007/s00253-020-10348-x
  4. Strategies for recombinant production of antimicrobial peptides with pharmacological potential vol.13, pp.4, 2020, https://doi.org/10.1080/17512433.2020.1764347
  5. Applications of Bacillus subtilis Spores in Biotechnology and Advanced Materials vol.86, pp.17, 2020, https://doi.org/10.1128/aem.01096-20
  6. Evaluation of immune response toBacillus subtilisspores expressingClonorchis sinensisserpin3 vol.147, pp.10, 2019, https://doi.org/10.1017/s0031182020000797
  7. An overview and future prospects of recombinant protein production in Bacillus subtilis vol.105, pp.18, 2019, https://doi.org/10.1007/s00253-021-11533-2
  8. Oral Administration of Bacillus subtilis Subunit Vaccine Significantly Enhances the Immune Protection of Grass Carp against GCRV-II Infection vol.14, pp.1, 2022, https://doi.org/10.3390/v14010030
  9. Expression of SARS-CoV-2 Spike Protein Receptor Binding Domain on Recombinant B. subtilis on Spore Surface: A Potential COVID-19 Oral Vaccine Candidate vol.10, pp.1, 2019, https://doi.org/10.3390/vaccines10010002