DOI QR코드

DOI QR Code

Isolation and Characterization of an Eosinophilic GH 16 β-Agarase (AgaDL6) from an Agar-Degrading Marine Bacterium Flammeovirga sp. HQM9

  • Liu, Yan (College of Marine Science, Shandong University) ;
  • Tian, Xiaoxu (National Facility for Protein Science in Shanghai, Zhangjiang Lab) ;
  • Peng, Chao (National Facility for Protein Science in Shanghai, Zhangjiang Lab) ;
  • Du, Zongjun (College of Marine Science, Shandong University)
  • Received : 2018.10.01
  • Accepted : 2018.12.03
  • Published : 2019.02.28

Abstract

A special eosinophilic agarase exo-type ${\beta}$-agarase gene, AgaDL6, was cloned from a marine agar-degrading bacterium, Flammeovirga sp. HQM9. The gene comprised 1,383-bp nucleotides encoding a putative agarase AgaDL6 of 461 amino acids with a calculated molecular mass of 52.8 kDa. Sequence analysis revealed a ${\beta}$-agarase domain that belongs to the glycoside hydrolase family (GH) 16 and a carbohydrate-binding module (CBM_4_9) unique to agarases. AgaDL6 was heterologously expressed in Escherichia coli BL21 (DE3). Enzyme activity analysis of the purified protein showed that the optimal temperature and pH of AgaDL6 were $50^{\circ}C$ and 3.0, respectively. AgaDL6 showed thermal stability by retaining more than 98% of activity after incubation for 2 h at $50^{\circ}C$, a feature quite different from other agarases. AgaDL6 also exhibited outstanding acid stability, retaining 100% of activity after incubation for 24 h at pH 2.0 to 5.0, a property distinct from other agarases. This is the first agarase characterized to have such high acid stability. In addition, we observed no obvious stimulation or inhibition of AgaDL6 in the presence of various metal ions and denaturants. AgaDL6 is an exo-type ${\beta}$-1,4 agarase that cleaved agarose into neoagarotetraose and neoagarohexaose as the final products. These characteristics make AgaDL6 a potentially valuable enzyme in the cosmetic, food, and pharmaceutical industries.

Keywords

References

  1. Singh A, Nigam PS, Murphy JD. 2011. Renewable fuels from algae: an answer to debatable land based fuels. Bioresour. Technol. 102: 10-16. https://doi.org/10.1016/j.biortech.2010.06.032
  2. Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi IG, et al. 2016. Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour. Technol. 199: 311-318. https://doi.org/10.1016/j.biortech.2015.08.001
  3. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CN, Kim PB, et al. 2012. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335: 308-313. https://doi.org/10.1126/science.1214547
  4. Song T, Xu H, Wei C, Jiang T, Qin S, Zhang W, Cao Y, et al. 2016. Horizontal transfer of a novel soil agarase gene from marine bacteria to soil bacteria via human microbiota. Sci. Rep. 6: 1-10. https://doi.org/10.1038/s41598-016-0001-8
  5. Hehemann JH, Correc G, Thomas F, Bernard T, Barbeyron T, Jam M, et al. 2012. Biochemical and structural characterization of the complex agarolytic enzyme system from the marine bacterium Zobellia galactanivorans. J. Biol. Chem. 287: 30571-30584. https://doi.org/10.1074/jbc.M112.377184
  6. Dong Q, Ruan LW, Shi H. 2016. A $\beta$-agarase with high pH stability from Flammeovirga sp. SJP92. Carbohydr. Res. 432: 1-8. https://doi.org/10.1016/j.carres.2016.05.002
  7. Chi WJ, Chang YK, Hong SK. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930. https://doi.org/10.1007/s00253-012-4023-2
  8. Zhang WB, Xu JN, Liu D Liu H, Lu XZ, Yu WG. 2018. Characterization of an $\alpha$-agarase from Thalassomonas sp. LD5 and its hydrolysate. Appl. Microbiol. Biotechnol. 102: 2203-2212. https://doi.org/10.1007/s00253-018-8762-6
  9. Ramos KRM, Valdehuesa KNG, Nisola GM, Lee WK, Chung WJ. 2018. Identification and characterization of a thermostable endolytic $\beta$-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C. New Biotechnol. 40: 261-267. https://doi.org/10.1016/j.nbt.2017.09.006
  10. Jung S, Lee CR, Chi WJ, Bae CH, Hong SK. 2017. Biochemical characterization of a novel cold-adapted GH39 beta-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7. Appl. Microbiol. Biotechnol. 101: 1965-1974. https://doi.org/10.1007/s00253-016-7951-4
  11. Araki C. 1959. Seaweed polysaccharides. pp 15-30. In: Wolfrom ML (ed) Carbohydrate chemistry of substances of biological interests. Pergamon Press, London.
  12. Lin B, Lu G, Zheng Y, Xie W, Li S, Hu Z. 2012. Gene cloning, expression and characterization of a neoagarotetraose-producing beta-agarase from the marine bacterium Agarivorans sp. HZ105. World J. Microbiol. Biotechnol. 28: 1691-1697. https://doi.org/10.1007/s11274-011-0977-y
  13. van der Meulen HJ, Harder W. 1976. Characterization of the neoagarotetraase and neoagarobiase of Cytophaga flevensis. Antonie van Leeuwenhoek 42: 81-94. https://doi.org/10.1007/BF00399451
  14. Morrice LM, McLean MW, Long WF, Williamson FB. 1983. $\beta$-Agarases I and II from Pseudomonas atlantica. Substrate specificities. Eur. J. Biochem. 137: 149-154. https://doi.org/10.1111/j.1432-1033.1983.tb07808.x
  15. Fu W, Han B, Duan D, Liu W, Wang C. 2008. Purification and characterization of agarases from a marine bacterium Vibrio sp. F-6. J. Ind. Microbiol. Biotechnol. 35: 915-922. https://doi.org/10.1007/s10295-008-0365-2
  16. Liao L, Xu XW, Jiang XW, Cao Y, Yi N, Huo YY, et al. 2011. Cloning, expression, and characterization of a new beta-agarase from Vibrio sp. strain CN41. Appl. Environ. Microbiol. 77: 7077-7079. https://doi.org/10.1128/AEM.05364-11
  17. Dong J, Tamaru Y, Araki T. 2007. A unique beta-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl. Microbiol. Biotechnol. 74: 1248-1255. https://doi.org/10.1007/s00253-006-0781-z
  18. Yang JI, Chen LC, Shih YY, Hsieh C, Chen CY, Chen WM, et al. 2011. Cloning and characterization of $\beta$-agarase AgaYT from Flammeovirga yaeyamensis strain YT. J. Biosci. Bioeng. 112: 225-232. https://doi.org/10.1016/j.jbiosc.2011.05.016
  19. Long M, Yu Z, Xu X. 2010. A novel $\beta$-agarase with high pH stability from marine Agarivorans sp. LQ48. Mar. Biotechnol. 12: 62-69. https://doi.org/10.1007/s10126-009-9200-7
  20. Ohta Y, Hatada Y, Miyazaki M, Nogi Y, Ito S, Horikoshi K. 2005. Purification and characterization of a novel $\alpha$-agarase from a Thalassomonas sp. Curr. Microbiol. 50: 212-216. https://doi.org/10.1007/s00284-004-4435-z
  21. Tawara M, Sakatoku A, Tiodjio RE, Tanaka D, Nakamura S. 2015. Cloning and characterization of a novel agarase from a newly isolated bacterium Simiduia sp. Strain TM-2 able to degrade various seaweeds. Appl. Biochem. Biotechnol. 177: 610-623. https://doi.org/10.1007/s12010-015-1765-1
  22. Fu X, Kim S. 2010. Agarases: review of major sources, categories, purification method, enzyme characteristics and application. Mar. Drugs. 8: 200-218. https://doi.org/10.3390/md8010200
  23. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382: 769-781. https://doi.org/10.1042/BJ20040892
  24. Ekborg N, Taylor L, Weiner R, Hutcheson S. 2006. Genomic and proteomic analysis of the agarolytic system of Saccharophagus degradans strain 2-40. Appl. Environ. Microbiol. 72: 3396-3405. https://doi.org/10.1128/AEM.72.5.3396-3405.2006
  25. Du ZJ, Zhang ZW, Miao TT. 2011. Draft Genome sequence of the novel agar-digesting marine bacterium HQM9. J. Bacteriol. 193: 4557-4558. https://doi.org/10.1128/JB.05513-11
  26. Chi WJ, Park DY, Seo YB, Chang YK, Lee SY, Hong SK. 2014. Cloning, expression, and biochemical characterization of a novel GH16 $\beta$-agarase AgaG1 from Alteromonas sp. GNUM-1. Appl. Microbiol. Biotechnol. 98: 4545-4555. https://doi.org/10.1007/s00253-014-5510-4
  27. McCarter JD, Withers SG. 1994. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 4: 885-892. https://doi.org/10.1016/0959-440X(94)90271-2
  28. Mai ZM, Su HF, Zhang S. 2016. Isolation and Characterization of a glycosyl hydrolase family 16 $\beta$-Agarase from a mangrove soil metagenomic library. Int. J. Mol. Sci. 17: 1-12. https://doi.org/10.3390/ijms17010001
  29. Xu H, Fu Y, Yang N, Ding Z, Lai Q, Zeng R. 2012. Flammeovirga pacifica sp. nov., isolated from deep-sea sediment. Int. J. Syst. Evol. Microbiol. 62: 937-941. https://doi.org/10.1099/ijs.0.030676-0
  30. Zhao J, Shi B, Jiang QR, Ke CH. 2012. Changes in gut-associated flora and bacterial digestive enzymes during the development stages of abalone (Haliotis diversicolor). Aquaculture 343: 147-153. https://doi.org/10.1016/j.aquaculture.2012.01.016
  31. Fu XT, Pan CH, Lin H, Kim SM. 2009. Gene cloning, expression, and characterization of a $\beta$-Agarase, AgaB34, from Agarivorans albus YKW-34. J. Microbiol. Biotechnol. 19: 257-264. https://doi.org/10.4014/jmb.0801.026
  32. Henshaw J, Horne-Bitschy A, van Bueren AL. 2006. Family 6 carbohydrate binding modules in beta-agarases display exquisite selectivity for the non-reducing termini of agarose chains. J. Biol. Chem. 281: 17099-17107. https://doi.org/10.1074/jbc.M600702200
  33. Alkotaini B, Han NS, Kim BS. 2016. Enhanced catalytic efficiency of endo-$\beta$-agarase I by fusion of carbohydrate-binding modules for agar prehydrolysis. Enzyme Microbial. Technol. 9: 142-149. https://doi.org/10.1016/j.enzmictec.2016.08.010
  34. Ohta Y, Hatada Y, Nogi Y. 2004. Enzymatic properties and nucleotide and amino acid sequences of a thermostable $\beta$-agarase from a novel species of deep-sea microbulbifer. Appl. Microbiol. Biotechnol. 64: 505-514. https://doi.org/10.1007/s00253-004-1573-y
  35. Hu Z, Lin BK, Xu Y, Zhong MQ, Liu GM. 2008. Production and purification of agarase from a marine agarolytic bacterium Agarivorans sp. HZ105. J. Appl. Microbiol. 106: 181-190. https://doi.org/10.1111/j.1365-2672.2008.03990.x
  36. Vera J, Alvarez R, Murano E, Slebe JC, Leon O. 1998. Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Appl. Environ. Microbiol. 64: 4378-4383. https://doi.org/10.1128/AEM.64.11.4378-4383.1998
  37. Wang JX, Mou HJ, Jiang XL, Guan HS. 2006. Characterization of a novel $\beta$-agarase from marine Alteromonas sp. SY37-12 and its degrading products. Appl. Microbiol. Biotechnol. 71: 833-839. https://doi.org/10.1007/s00253-005-0207-3
  38. Fu XT, Lin H, Kim SM. 2008. Purification and characterization of a novel $\beta$-agarase, AgaA34, from Agarivorans albus YKW-34. Appl. Microbiol. Biotechnol. 78: 265-273. https://doi.org/10.1007/s00253-007-1303-3
  39. Kim JH, Yun EJ, Seo N, Yu S, Kim DH, Cho KM, et al. 2017. Enzymatic liquefaction of agarose above the sol-gel transition temperature using a thermostable endo-type $\beta$-agarase, Aga16B. Appl. Microbiol. Biotechnol. 101: 1111-1120. https://doi.org/10.1007/s00253-016-7831-y
  40. Kim HT, Lee S, Kim KH, Choi IG. 2012. The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour. Technol. 107: 301-306. https://doi.org/10.1016/j.biortech.2011.11.120
  41. Yun EJ, Lee S, Kim JH, Kim BB, Kim HT, Lee SH, et al. 2013. Enzymatic production of 3,6-anhydro-l-galactose from agarose its purification and in vitro skin-whitening anti-inflammatory activities. Appl. Microbiol. Biotechnol. 97: 2961-2970. https://doi.org/10.1007/s00253-012-4184-z
  42. Kim SW, Hong CH, Jeon SW, Shin HJ. 2015. High-yield production of reducing sugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes. Bioresour. Technol. 196: 634-641. https://doi.org/10.1016/j.biortech.2015.08.016
  43. Rios G, Ferrando A, Serrano R. 1997. Mechanisms of salt tolerance conferred by overexpression of the HAL1 Gene in Saccharomyces cerevisiae. Yeast 13: 515-528. https://doi.org/10.1002/(SICI)1097-0061(199705)13:6<515::AID-YEA102>3.0.CO;2-X
  44. Liu N, Mao X, Du Z, Mu B, Wei D. 2014. Cloning and characterization of a novel neoagarotetraose forming beta-agarase, AgWH50A from Agarivorans gilvus WH0801. Carbohydr. Res. 388: 147-151. https://doi.org/10.1016/j.carres.2014.02.019
  45. Li J, Hu Q, Li Y, Xu Y. 2015. Purification and characterization of cold-adapted beta-agarase from an Antarctic psychrophilic strain. Braz . J. Microbiol. 46: 683-690. https://doi.org/10.1590/S1517-838246320131289

Cited by

  1. Isolation and characterisation of the agarolytic bacterium Pseudoalteromonas ruthenica vol.14, pp.1, 2019, https://doi.org/10.1515/biol-2019-0066
  2. Isolation and characterisation of the agarolytic bacterium Pseudoalteromonas ruthenica vol.14, pp.1, 2019, https://doi.org/10.1515/biol-2019-0066
  3. 한천분해효소의 재조합발현 : 기원, 활성조건, 분비신호와 게놈분석 등 vol.30, pp.3, 2019, https://doi.org/10.5352/jls.2020.30.3.304
  4. Implications of agar and agarase in industrial applications of sustainable marine biomass vol.104, pp.7, 2019, https://doi.org/10.1007/s00253-020-10412-6