DOI QR코드

DOI QR Code

Dynamic Slot Re-assignment Scheme for Network Merge in Swarming Drone Networks

군집 드론 네트워크에서 네트워크 결합을 위한 동적 슬롯 재할당 기법

  • Lee, Jong-Kwan (Department of Computer Science, Korea Military Academy) ;
  • Lee, Minwoo (Department of Military Digital Convergence, Ajou University)
  • Received : 2018.10.10
  • Accepted : 2019.01.30
  • Published : 2019.02.28

Abstract

In this paper, we propose an efficient dynamic slot re-assignment scheme for swarming drone networks in which networks members merged and split frequently. The leader drone of each network recognizes the slot allocation information of neighbor networks by periodic information exchange among between the drones. Using the information, the leader drone makes a decision how to reallocate the slots between members in case of network merge. The non-competitive method in the proposed scheme can re-assign the slots without any slot collision and shows always superior performance than competitive scheme. The competitive method in the proposed scheme reduces the number of slots that should be re-assigned in case of network merge. The experimental performance analysis shows that the proposed scheme performs better or at least equal to the performance of the competitive scheme in a swarming drone network.

본 논문에서는 네트워크가 수시로 결합, 분리되는 군집 드론 네트워크를 위한 효과적인 동적 슬롯 재할당 기법을 제안한다. 네트워크별 리더 노드는 드론들간의 주기적인 정보교환을 통해 이웃 네트워크의 슬롯할당정보를 파악한다. 해당 정보를 이용하여 리더 노드는 네트워크가 결합되는 경우, 경쟁방식을 적용했을 때의 슬롯할당 성공확률을 기준으로 경쟁 또는 비경쟁방식으로 슬롯을 재할당한다. 제안하는 기법에서 비경쟁방식으로 슬롯을 재할당하면 충돌없이 슬롯을 재할당하며 네트워크 규모와 무관하게 항상 동일한 성능을 보장할 수 있다. 그리고 경쟁방식을 적용하면 네트워크 결합에 의해 재할당해야하는 슬롯의 개수를 최소화할 수 있다. 실험을 통해 제안하는 기법이 동적인 군집 드론 네트워크에서 경쟁 방식에 비해 항상 우수하거나 최소한 동일한 성능을 보임을 확인한다.

Keywords

HOJBC0_2019_v23n2_156_f0001.png 이미지

Fig. 1 Frame structure

HOJBC0_2019_v23n2_156_f0002.png 이미지

Fig. 2 Example of slot allocation information: (a) network topology and frame structure, (b) 1-hop slot allocation information

HOJBC0_2019_v23n2_156_f0003.png 이미지

Fig. 3 Slot allocation process for a newly arrived drone

HOJBC0_2019_v23n2_156_f0004.png 이미지

Fig. 4 Control message exchange between leader drones

HOJBC0_2019_v23n2_156_f0005.png 이미지

Fig. 5 Example of slot reallocation in case of network merge : (a) NetID1 before merging (b) NetID2 before merging (c) NetID3 after merging (shadow circle represents a leader drone)

HOJBC0_2019_v23n2_156_f0006.png 이미지

Fig. 6 N when varying n2 and M in the proposed and contention scheme (n1 = 50, p=0.2)

HOJBC0_2019_v23n2_156_f0007.png 이미지

Fig. 7 N when varying n2 and p in the proposed and contention scheme (M=20)

HOJBC0_2019_v23n2_156_f0008.png 이미지

Fig. 8 N when varying n2 and M in the proposed scheme (n1=50, p=0.2)

HOJBC0_2019_v23n2_156_f0009.png 이미지

Fig. 9 N when varying n2 and p in the proposed scheme (n1=50, M=20)

Table. 1 Notation

HOJBC0_2019_v23n2_156_t0001.png 이미지

References

  1. S. H. Son, J. H. Kang, and K. J. Park, "Drone wireless communication overview and Issues," The Journal of The Korean Institute of Communication Sciences, vol. 33, no. 2, pp.93-99, Jan. 2016.
  2. A. Dirafzoon, and E. Lobaton, "Topological Mapping of Unknown Environments using an Unlocalized Robotic Swarm," in Proceeding of 2013 IEEE/RSJ Intelligent Robots and Systems (IROS), Tokyo, pp. 5541-5551, 2013.
  3. L. Gupta, R. Jain, and G. Vaszkun, "Survey of Important Issues in UAV Communication Networks," IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1123-1152, Secondquarter 2016. https://doi.org/10.1109/COMST.2015.2495297
  4. S. H. Lee, and K. H. Han, "Implementation of Multi-channel communication system for drone swarms control," The Transaction of the Korea Institute of Electrical Engineers, vol. 66, no. 1, pp. 179-185, Jan. 2017. https://doi.org/10.5370/KIEE.2017.66.1.179
  5. E. Lee, and Y. B. Ko, "A contention based Time division Channel Access Scheme for Large-scale swarming drones," The Journal of Korea Institute of Communications and Information Sciences, vol. 43, no. 01, pp. 121-127, Jan. 2018. https://doi.org/10.7840/kics.2018.43.1.121
  6. H. J. Kim, "Advanced CSMA algorithm for throughput and utility maximization in wireless networks," Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 7, no .4, pp. 279-286, April 2017. https://doi.org/10.14257/AJMAHS.2017.04.76
  7. J. K. Lee, K. M. Lee, H. J. Noh, and J. S. Lim, "Artificial Collision-Based Dynamic Slot Assignment for In-Band Control Networks," IEEE Transactions on Wireless Communications, vol. 13, no. 11, pp. 5985-5998, Nov. 2014. https://doi.org/10.1109/TWC.2014.2314112
  8. M. Rayenizadeh, M. K. Rafsanjani, and A. B. Saeid, "Cluster head selection using hesitant fuzzy in Wireless Sensor Networks," in Proceeding of the 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), Kerman, Iran, pp. 139-141, 2018.
  9. M. M. Tulu, R. Hou, C. Li, and M. D. Amentie, "Cluster head selection method for content-centric mobile social network in 5G," IET Communications, vol. 12, no. 4, pp. 402-408, March 2018. https://doi.org/10.1049/iet-com.2016.1433
  10. B. Gangwar, J. D. Bhosale, and N. Gangwar, "An energy optimized path selection and dynamic Cluster head selection for Wireless Mesh Network," in Proceeding of the International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, pp. 272-277, 2017.
  11. H. R. Park, W. Kim, and S. D. Jang. "An Efficient Scheme for Electing Cluster Header Using Remaining Electric Energy in Ad Hoc Networks." Journal of the Korea Institute of Information and Communication Engineering, vol. 16. no. 6, pp. 1173-1178, June 2012. https://doi.org/10.6109/jkiice.2012.16.6.1173

Cited by

  1. 개인전투체계 다중홉 네트워크를 위한 동적 시간슬롯 할당 기법 vol.24, pp.1, 2019, https://doi.org/10.9766/kimst.2021.24.1.115