DOI QR코드

DOI QR Code

The analysis of the operating characteristic for the wideband coaxial line impedance transformer

광대역 동축선로 임피던스 변환회로의 동작 특성 분석

  • Park, Ung-hee (Department of Electronic Engineering, Kangwon University)
  • Received : 2018.10.16
  • Accepted : 2018.11.12
  • Published : 2019.02.28

Abstract

Using two or more coaxial lines, if one port is connected in series and the other port is connected in parallel, it can be implemented the wideband transmission line transformer(TLT). Because the wideband TLT utilizes the outer conductor of the coaxial line, it is difficult to predict the characteristics. In this paper, based on the analysis for the transfer characteristic(S21) according to the loss of the each line in ${\lambda}/4$-microstrip line TLT, the operating characteristic of the fabricated wideband 4:1 TLT using two $25{\Omega}$-coaxial lines is investigated. The fabricated wideband TLT shows the notch characteristic in which the transfer signal sharply decreases at ${\lambda}/4$ frequency of the coaxial line and has a value within -0.2dB of the transfer characteristic(S21) in $0.06{\sim}0.2{\lambda}$ frequency range of the coaxial line. This transfer characteristics(S21) can change the operating frequency range slightly and set the optimum transfer characteristic(S21) at the desired frequency by changing the length of the microstrip line.

두 개 이상의 동축선을 사용하여 한 쪽은 동축선을 직렬로 연결하고, 반대 쪽은 동축선을 병렬로 연결하면 광대역에서 동작하는 임피던스 변환회로가 된다. 동축선을 이용한 광대역 임피던스 변환회로는 동축선의 외곽 도체를 임피던스 변환에 이용하기 때문에 수식 또는 시뮬레이션 프로그램을 통한 예측이 매우 어렵다. 본 논문에서는 ${\lambda}/4$-마이크로스트립 선로 임피던스 변환회로의 선로 신호 감쇄에 대한 전달 특성(S21) 해석을 바탕으로 $25{\Omega}$ 동축선 두 개를 이용한 광대역 4:1($50{\Omega}:12.5{\Omega}$) 전송선로 임피던스 변환회로를 제작하여 동작 특성을 살펴보았다. 두 개의 동축선을 이용한 광대역 임피던스 변환기는 동축선의 길이를 90도(${\lambda}/4$)로 인식하는 주파수에서 신호 전달 특성(S21)이 급격히 감소하는 노치 특성이 발생하였다. 또한, 동축선 길이의 $0.06{\sim}0.2{\lambda}$에 해당하는 주파수 범위에서 신호 전달특성(S21) -0.2dB 이내의 값을 가졌다. 이러한 신호 전달특성(S21)은 출력 단에 연결된 마이크로스트립 선로의 길이 변화를 통해 약간의 동작 주파수 범위 변화와 원하는 주파수에서 최적의 신호 전달특성(S21)을 설정할 수 있음을 확인하였다.

Keywords

HOJBC0_2019_v23n2_165_f0001.png 이미지

Fig. 1 The block diagram of the transmission line impedance transformer(TLT); (a) λ/4-microstrip line TLT, and (b) λ/4-coaxial line TLT

HOJBC0_2019_v23n2_165_f0002.png 이미지

Fig. 2 The wideband TLT using two coaxial lines

HOJBC0_2019_v23n2_165_f0003.png 이미지

Fig. 3 The circuit block diagram for the operation characteristic analysis of λ/4-microstrip line TLT; (a) S11 measurement, and (b) S21 measurement

HOJBC0_2019_v23n2_165_f0004.png 이미지

Fig. 4 4:1 coaxial cable TLT using 12.5-Ω microstrip line length of 27.29mm(45° at 900MHz); (a) Fabrication photograph, (b) One-port characteristic(S11), and (c) Two-port characteristic (S11 & S21)

HOJBC0_2019_v23n2_165_f0005.png 이미지

Fig. 5 Minimum S11 measurement according to the length of 12.5Ω microstrip line; (a) Measurement block diagram, and (b) Measurement result

HOJBC0_2019_v23n2_165_f0006.png 이미지

Fig. 6 Fabrication photograph of wideband 4:1 coaxial line TLT

HOJBC0_2019_v23n2_165_f0007.png 이미지

Fig. 7 Operation characteristic(S11&S21) of the wideband 4:1 coaxial line TLT according to the length of 12.5Ω microstrip line; (a) 27.29mm(45° at 900MHz), (b) 49.14mm(45° at 500MHz), and (c) 122.86mm(45° at 200MHz)

Table. 1 S21 characteristic due to the length(α2) of the middle microstrip line

HOJBC0_2019_v23n2_165_t0001.png 이미지

Table. 2 Minimum S11 value according to the length of 12.5Ω microstrip line in wideband 4:1 coaxial line TLT

HOJBC0_2019_v23n2_165_t0002.png 이미지

References

  1. T. C. Chen, X. Yu, and H. Xin, "A compact planar power combiner with complex impedance matching," Microwave and optical technology letters, vol. 58, no. 5, pp. 1121-1125, March 2016. https://doi.org/10.1002/mop.29752
  2. I. Jongsuebchoke, P. Akkaraekthalin, and D. Torrungrueng, "Theory and design of quarter-wave-like transformers implemented using conjugately characteristic-impedance transmission lines," Microwave and optical technology letters, vol. 58, no. 11, pp. 2614-2619, August 2016. https://doi.org/10.1002/mop.30120
  3. A. Grebennikov, N. Kumar, and B. S. Yarman, "Transmission-Line Transformers and Combiners," in Power Amplifier Design Principles: Broadband RF and Microwave Amplifiers, Boca Raton, FL: CRC Press, Taylor & Francis Group, ch. 2, pp. 92-103, 2016.
  4. X. Wang, M. Ohira, and Z. Ma, "A flexible two-section transmission-line transformer design approach for complex source and real load impedance," IEICE Electronics Express, vol. 14, no. 1, pp. 1-6, January 2017.
  5. J. H. Park, "Inductance and Electrical Properties of Wireless Power Transmission Coil," Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 6, no. 2, pp. 481-488, February 2016. https://doi.org/10.14257/AJMAHS.2016.02.49
  6. U. H. Park, "Wideband Impedance Transformer Using a Coaxial Cable," Journal of Korea Institute of Information and Communication Engineering, vol. 15, no.4, pp. 789-794, April 2011. https://doi.org/10.6109/jkiice.2011.15.4.789
  7. J. Sevick, Transmission Line Transformer, 2nd ed. Newington, CT: The American Radio Relay League, 1990.
  8. R. E. Collin, "Impedance Transformation and Matching," in Foundations for Microwave Engineering, 2nd ed. Singapore: McGraw-Hill, 1992.
  9. U. H. Park, "Design of a RF fixed phase control circuit using I&Q Demodulator," Journal of the Institute of Electronics Engineers of Korea, vol. 259, no. 1, pp. 8-14, January 1999.