DOI QR코드

DOI QR Code

Background Concentration and Contamination Assessment of Heavy Metals in Korean Coastal Sediments

한반도 연안 퇴적물의 중금속 배경농도 및 오염도 평가

  • WOO, JUNSIK (Geosystem Research Corporation) ;
  • LEE, HYOJIN (Geosystem Research Corporation) ;
  • PARK, JONGKYU (Geosystem Research Corporation) ;
  • PARK, KYOUNGKYU (Department of Marine Environmental Science, Chungnam National University) ;
  • CHO, DONGJIN (Department of Marine Environmental Science, Chungnam National University) ;
  • JANG, DONGJUN (Department of Marine Environmental Science, Chungnam National University) ;
  • PARK, SOJUNG (Department of Marine Environmental Science, Chungnam National University) ;
  • CHOI, MANSIK (Department of Marine Environmental Science, Chungnam National University) ;
  • YOO, JEONGKYU (Korea Marine Environment Management Corporation)
  • 우준식 ((주)지오시스템리서치) ;
  • 이효진 ((주)지오시스템리서치) ;
  • 박종규 ((주)지오시스템리서치) ;
  • 박경규 (충남대학교 해양환경과학과) ;
  • 조동진 (충남대학교 해양환경과학과) ;
  • 장동준 (충남대학교 해양환경과학과) ;
  • 박소정 (충남대학교 해양환경과학과) ;
  • 최만식 (충남대학교 해양환경과학과) ;
  • 유정규 (해양환경공단)
  • Received : 2019.01.08
  • Accepted : 2019.01.30
  • Published : 2019.02.28

Abstract

The background concentrations of heavy metals in Korean coastal sediments were estimated using heavy metal data for 495 sediments obtained from 'National Marine Ecosystem Survey (Coastal ecosystem) in 2016-2017' and the extent of contamination was assessed. Al, Cs, and Li are chosen as appropriate indicators for sediment grain size. In the relationships between heavy metal and indicators concentrations, the lowest slope data were selected through the outlier removal and residual analysis, and the background concentrations were presented as a linear regression line between metal and indicator. Comparing the previous studies for the background concentrations of heavy metals in Korean coastal sediments, concentration levels were generally consistent but those for As and Cd were presented for the first time, and the background concentration using Li as the indicator was presented for the first time.

2016~2017년 '국가해양생태계 종합조사(연안생태계)'에서 얻어진 495개의 퇴적물 중금속 자료를 이용하여 한반도 연안 퇴적물의 중금속 배경농도를 산정하고 오염도를 평가하였다. 퇴적물 입도를 나타내는 지시자로 Al, Cs, Li이 적절하였으며, 이 들과 중금속 농도 사이의 관계에서 이상치 제거 및 잔차 분석을 통하여 가장 낮은 기울기의 자료를 선택하여 중금속과 지시자 사이의 회귀 직선으로 배경농도를 표시하였다. 기존 연구에서의 배경농도와 본 연구의 결과는 비교적 잘 일치하였으며, 본 연구에서는 As 및 Cd에 대해 처음으로 제시하였고, 지시자로 Li을 사용한 배경농도 식을 처음으로 제시하였다.

Keywords

GHOHBG_2019_v24n1_64_f0001.png 이미지

Fig. 1. Map showing sampling locations.

GHOHBG_2019_v24n1_64_f0002.png 이미지

Fig. 2. Spatial distribution of mean grain size(a), TOC(b), CaCO3(c), S(d), Fe(e), Al(f), Cs(g), Li(h) concentrations in surface sediments of August, 2016 and 2017.

GHOHBG_2019_v24n1_64_f0003.png 이미지

Fig. 3. Spatial distribution of As(a), Cd(b), Cr(c), Ci(d), Ni(e), Pb(f), Zn(g) concentration in surface sediments of August, 2016 and 2017.

GHOHBG_2019_v24n1_64_f0004.png 이미지

Fig. 4. Relationships between mean grain size, < 16 μm content and conservative elements (Al, Cs, Li) concentrations in surface sediments.

GHOHBG_2019_v24n1_64_f0005.png 이미지

Fig. 5. Relationships between conservative elements (Al, Cs, Li) and heavy metals in surface sediments. Background concentrations presented as the regressed lines for background sediments were depicted as dotted lines.

Table 1. Measured concentrations of heavy metals for MESS-3/MESS-4(NRCC sediment certified reference material)

GHOHBG_2019_v24n1_64_t0001.png 이미지

Table 2. Statistical parameters for mean grain size, total organic carbon(TOC), calcium carbonate(CaCO3), major elements and heavy metals in surface sediments

GHOHBG_2019_v24n1_64_t0002.png 이미지

Table 3. Background concentrations of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in coastal sediments of Korea, which were presented as a regressed line with Al, Cs, Li concentration

GHOHBG_2019_v24n1_64_t0003.png 이미지

Table 4. Assessment of heavy metals in surface sediments based on Korean marine sediment quality guidelines and enrichment factors (Efs) relative to natural baseline concentrations (Aug, 2016 and 2017)

GHOHBG_2019_v24n1_64_t0004.png 이미지

References

  1. Balistrieri, L.S. and T.T. Chao, 1990. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochimica et Cosmochimica Acta, 54: 739-751. https://doi.org/10.1016/0016-7037(90)90369-V
  2. Belzile, N., Y.W. Chen and R. Xu, 2000. Early diagenetic behaviour of selenium in freshwater sediments. Applied Geochemistry, 15: 1439-1454. https://doi.org/10.1016/S0883-2927(00)00011-1
  3. Birch, G.F., 2017. Determination of sediment metal background concentrations and enrichment in marine environments -A critical review, Sci of the Total Environment, 580: 813-831. https://doi.org/10.1016/j.scitotenv.2016.12.028
  4. Chester, R., 2000. Marine geochemistry. Blackwell Science, Oxford.
  5. Cho, D.G., M.S. Choi and C.K. Kim, 2018. Distribution of Total Mercury in Korean Coastal Sediments. J. Korean Soc. Oceanogr, 23: 76-90.
  6. Cho, H.C. and Y.G. Cho, 2015. Heavy Metals in Surface Sediments from Doam Bay, Southwestern Coast of Korea. J. Korean Soc. Oceanogr, 20: 159-168.
  7. Cho, Y.G. and K.Y. Park 1998. Heavy metals in surface sediments of the Youngsan Estuary, west coast of Korea. J Kor Environ Sci Soc., 7: 549-557.
  8. Cho, Y.G., C.B. Lee and M.S. Choi, 1999. Geochemistry of surface sediments off the southern and western coasts of Korea. Mar Geol, 159: 111-129. https://doi.org/10.1016/S0025-3227(98)00194-7
  9. Folk, R.L. and W.C. Ward, 1957. Brazos river bar: A study in the significance of grain size parameters. J Sed Petol, 27: 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  10. Forstner, U. and G.T.W. Wittmann, 1981. Metal Pollution in the Aquatic Environment. Springer, Berlin Heidelberg, Berlin, Heidelberg.
  11. Fukue, M., M. Yanai, Y. Sato, T. Fujikawa, Y. Furukawa, and S. Tani, 2006. Background values for evaluation of heavy metal contamination in sediments. Journal of Hazardous Materials, 136: 111-119. https://doi.org/10.1016/j.jhazmat.2005.11.020
  12. Galuszka, A., 2007. A review of geochemical background concepts and an example using data from Poland. Environmental Geology, 52: 861-870. https://doi.org/10.1007/s00254-006-0528-2
  13. Horowitz, A.J., 1991. A primer on sediment-trace element chemistry. Lewis Publishers.
  14. Hwang, D.W., I.S. Lee, M. Choi, S.Y. Kim and H.G. Choi, 2013a. Evaluation of organic matter and trace metal contaminationin surface sediments around the geum River Estuary using sediment quality guidelines. Korean Journal of Fisheries andAquatic Sciences, 46: 930-940.
  15. Hwang, D.W., P.J. Kim, R.H. Jung and S.P. Yoon, 2013b. Distributions of organic matter and trace metals in intertidal surface sediment from the Mokpo-Haenam coast. Korean J Fish Aquat Sci., 46: 454-466. https://doi.org/10.5657/KFAS.2013.0454
  16. Hyun, S.M., T.H. Lee, J.S. Choi, D.L. Choi and H.J. Woo, 2003. Geochemical characteristic sand heavy metal pollutions in the surface sediments of Gwangyang and Yeosu bay, South coast of Korea. J. Korean. Soc. Ocean., 8: 380-391.
  17. Jeon, S.G. and Y.G. Cho, 2002. Some heavy metal concentration of surface sediments from the southwestern coast of Korea. J Environ Sci., 11: 1299-1305.
  18. Kim, B.S., 2001. Assessment of heavy metal contamination of the coastal surface sediments around Korea. Ph.D.Thesis, Seoul National University, Seoul, 114 pp.
  19. Kim, G., H.S. Yang and Y. Kodama, 1998. Distributions of transition elements in the surface sediments of the Yellow Sea. Cont Shelf Res., 18: 1531-1542. https://doi.org/10.1016/S0278-4343(98)00038-7
  20. Kim, J.G., S.J. You and W.S. Ahn, 2008. Evaluation of characteristics of particle compostion and pollution of heavy metals for tidal flat sediments in the Julpo Bay, Korea. J Kor Soc Mar Environ Safety, 14: 247-256.
  21. Kotze, P., H.H. Preez and J.H.J. van Vuren, 1999. Bioaccumulation of copper and zinc of Oreochromis mossambicus and Clarias gariepinus, from the Olifants river, Mpumalanga, South Afirica. Water SA, 25: 99-110.
  22. Lee, M.K., W. Bae, I.K. Um and H.S Jung, 2004. Characteristics of heavy metal distribution in sediments of Youngil Bay, Korea. J Kor Soc Environ Engin, 26: 543-551.
  23. Lim, D.I., J.Y. Choi, H.S. Jung, H.W. Choi and Y.O. Kim, 2007. Natural background level analysis of heavy metal concentration in Korean coastal sediments. Ocean and Polar Research, 29: 379-389. https://doi.org/10.4217/OPR.2007.29.4.379
  24. Loring, D.H., 1990. Lithium - a new approach for the granulometric normalization oftrace metal data. Marine Chemistry, 29(0): 155-168. https://doi.org/10.1016/0304-4203(90)90011-Z
  25. Luoma, S.N., 1990. Processes affecting metal concentrations in estuarine and coastal marine sediments. CRC PRESS, BOCA RATON, FL(USA). 51-66.
  26. MacFarlane, G.R. and M.D. Burchett, 2000. Cellular distribution of copper, lead and zinc in the Grey Mangrove Avicennia marina (Forsk.) Vierh. Aquat Bot, 68:45-59. https://doi.org/10.1016/S0304-3770(00)00105-4
  27. Martin, J.M. and M. Whitfield, 1983. The significance of river input of chemical elements to the ocean. In: Trace Metals in Sea Water.Wang CS, Boyle E, Burton JD and Goldberg ED, ed. Plenum, New York, U.S.A., 265-298.
  28. Matschullat, J., R. Ottenstein and C. Reimann, 2000. Geochemical background-can we calculate it?, Environ. Geol., 39: 990-1000. https://doi.org/10.1007/s002549900084
  29. MOF (Ministry of Oceans and Fisheries), 2013. Korean Standard Method for Marine Environment, MOF Notification. No.2013-230.
  30. MOF (Ministry of Oceans and Fisheries), 2016. Protocol of National Survey on Marine Ecosystem, 2nd Edition.
  31. MOF (Ministry of Oceans and Fisheries), 2018. Marine Environment guideline, MOF Notification. No.2018-10.
  32. Newman, B.K. and R.J. Watling, 2007. Definition of baseline metal concentration for assessing metal enrichment of sediment from the south-eastern.
  33. Reimann, C., and R.G. Garrett, 2005. Geochemical background - concept and reality.Science of the Total Environment, 350(1-3): 12-27. https://doi.org/10.1016/j.scitotenv.2005.01.047
  34. Rodriguez, J.G., I. Tueros, A. Borja, M.J. Belzunce, J. Franco, O. Solaun, V. Valencia and A. Zuazo, 2006. Maximum likelihood mixture estimation to determine metal background values in estuarine and coastal sediments within the European Water Framework Directive. Science of the Total Environment, 370: 278-293. https://doi.org/10.1016/j.scitotenv.2006.08.035
  35. Rubio, B., M.A. Nombela and F. Vilas, 2000. Geochemistry of Major and Trace Elementsin Sediments of the RiadeVigo(NW Spain):an Assessmentof Metal Pollution, Marine Pollution Bulletin, 40: 968-980. https://doi.org/10.1016/S0025-326X(00)00039-4
  36. Sahu, K.C. and U. Bhosale, 1991. Heavy metal pollution around the island city of Bombay, India. Part I: quantification of heavy metal pollution of aquatic sediments and recognition of environmental discriminants. Chem Geol, 91: 263-283. https://doi.org/10.1016/0009-2541(91)90104-Y
  37. Schropp, S.J., F.G. Lewis, H.L. Windom, J.D. Ryan, F.D. Calder and L.C. Burney, 1990. Interpretation of metalconcentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries, 13: 227-235. https://doi.org/10.2307/1351913
  38. Siegel, F.R., 1995. Environmental geochemistry in development planning: An example from the Nile delta, Egypt. Geochem. Exploration, 55: 265-273. https://doi.org/10.1016/0375-6742(94)00071-9
  39. Song, Y. and M.S. Choi, 2017. Assessment of heavy metal contamination in sediments along the coast of South Korea using Cs-normalized background concentrations. Marine Pollution Bulletin, 117: 532-537. https://doi.org/10.1016/j.marpolbul.2017.02.019
  40. Song, Y., M.S. Choi, J.Y. Lee and D.J. Jang, 2014. Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea. Science of the Total Environment, 482: 80-91. https://doi.org/10.1016/j.scitotenv.2014.02.068
  41. Summers, J.K., T.L. Wade, V.D. Engle, and Z.A. Malaeb, 1996. Normalization of metal concentration in estuarine sediments from the Gulf of Mexico. Estuaries, 19: 581-594. https://doi.org/10.2307/1352519
  42. Taylor, S.R. and S.M., McLennan, 1995. The geochemical evolution of the continental crust. Reviews of Geophys, 33: 241-265. https://doi.org/10.1029/95RG00262
  43. Taylor, S.R., 1964. Abundance of chemical elements in the continental crust: A new table. Geochem Cosmochim Acta, 28: 1273-1285. https://doi.org/10.1016/0016-7037(64)90129-2
  44. Thornton, I., 1983. Applied environmental geochemistry. Academic Press.
  45. Zabetoglou, K., D. Voutsa and C. Samara, 2002. Toxicity and heavy metal contamination of surficial sediments fromBay of Thessaloniki (Northwestern Aegean Sea) Greece. Chemosphere, 49: 17-26. https://doi.org/10.1016/S0045-6535(02)00194-7
  46. Zhang, J. and C.L. Liu, 2002. Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci., 54: 1051-1070. https://doi.org/10.1006/ecss.2001.0879