DOI QR코드

DOI QR Code

Numerical simulation of seismic tests on precast concrete structures with various arrangements of cladding panels

  • Lago, Bruno Dal (Department of Civil and Environmental Engineering, Politecnico di Milano)
  • Received : 2018.03.11
  • Accepted : 2019.02.02
  • Published : 2019.03.25

Abstract

The unexpected seismic interaction of dry-assembled precast concrete frame structures typical of the European heritage with their precast cladding panels brought to extensive failures of the panels during recent earthquakes due to the inadequateness of their connection systems. Following this recognition, an experimental campaign of cyclic and pseudo-dynamic tests has been performed at ELSA laboratory of the Joint Research Centre of the European Commission on a full-scale prototype of precast structure with vertical and horizontal cladding panels within the framework of the Safecladding project. The panels were connected to the frame structure by means of innovative arrangements of fastening systems including isostatic, integrated and dissipative. Many of the investigated configurations involved a strong frame-cladding interaction, modifying the structural behaviour of the frame turning it into highly non-linear since small deformation. In such cases, properly modelling the connections becomes fundamental in the framework of a design by non-linear dynamic analysis. This paper presents the peculiarities of the numerical models of precast frame structures equipped with the various cladding connection systems which have been set to predict and simulate the experimental results from pseudo-dynamic tests. The comparison allows to validate the structural models and to derive recommendations for a proper modelling of the different types of existing and innovative cladding connection systems.

Keywords

Acknowledgement

Supported by : European Commission

References

  1. Babic, A. and Dolsek, M. (2016), "Seismic fragility functions of industrial precast building classes", Eng. Struct., 118, 357-370. https://doi.org/10.1016/j.engstruct.2016.03.069
  2. Baird, A., Palermo, A. and Pampanin, S. (2012), "Experimental and numerical validation of seismic interaction between cladding systems and moment resisting frames", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September; Paper No. 1981.
  3. Batalha, N., Rodrigues, H. and Varum, H. (2019), "Seismic performance of RC precast industrial buildings-learning with the past earthquakes", Innov. Infrastr. Sol., 4(1), 4. https://doi.org/10.1007/s41062-018-0191-y
  4. Belleri, A. (2017), "Displacement based design for precast concrete frames with not-emulative connections", Eng. Struct., 141, 228-240. https://doi.org/10.1016/j.engstruct.2017.03.020
  5. Belleri, A., Brunesi, E., Nascimbene, R., Pagani, M. and Riva, P. (2015), "Seismic performance of precast industrial facilities following major earthquakes in the Italian territory", J. Perform. Constr. Facil., 29(5), 04014135. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000617
  6. Belleri, A., Cornali, F., Passoni, C., Marini, A. and Riva, P. (2018), "Evaluation of out-of-plane seismic performance of column-tocolumn precast concrete cladding panels in one-storey industrial buildings", Earthq. Eng. Struct. Dyn., 47(2), 397-417. https://doi.org/10.1002/eqe.2956
  7. Belleri, A., Schoettler, M.J., Restrepo, J. and Fleishman, R.B. (2014), "Dynamic behavior of rocking and hybrid cantilever walls in a precast concrete building", ACI Struct. J., 111(3), 661-672. https://doi.org/10.14359/51686778
  8. Belleri, A., Torquati, M., Marini, A. and Riva, P. (2016), "Horizontal cladding panels: in-plane seismic performance in precast concrete buildings", Bull. Earthq. Eng., 14(4), 1103-1129. https://doi.org/10.1007/s10518-015-9861-8
  9. Biondini, F. and Toniolo, G. (2009), "Probabilistic calibration and experimental validation of the seismic design criteria for onestorey concrete frames", J. Earthq. Eng., 13, 426-462. https://doi.org/10.1080/13632460802598610
  10. Biondini, F., Dal Lago, B. and Toniolo, G. (2013), "Role of wall panel connections on the seismic performance of precast structures", Bull. Earthq. Eng., 11(4), 1061-1081. https://doi.org/10.1007/s10518-012-9418-z
  11. Bournas, D., Negro, P. and Taucer, F. (2013b), "Performance of industrial buildings during the Emilia earthquakes in Northern Italy and recommendations for their strengthening", Bull. Earthq. Eng., 12(5), 2383-2404. https://doi.org/10.1007/s10518-013-9466-z
  12. Bournas, D.A., Negro, P. and Molina, F.J. (2013a), "Pseudodynamic Tests on a full-scale 3-storey precast concrete building: behaviour of the mechanical connections and floor diaphragms", Eng. Struct., 57, 609-627. https://doi.org/10.1016/j.engstruct.2013.05.046
  13. Brunesi, E., Nascimbene, R., Bolognini, D. and Bellotti, D. (2015a), "Experimental investigation of the cyclic response of reinforced precast concrete frames structures", PCI J., 2, 57-79.
  14. Brunesi, E., Nascimbene, R., Deyanova, M., Pagani, C. and Zambelli, S. (2015b), "Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels", Comput. Concrete, 15(6), 951-972. https://doi.org/10.12989/cac.2015.15.6.951
  15. Buratti, N., Minghini, F., Ongaretto, E., Savoia, M. and Tullini, N. (2017), "Empirical seismic fragility for the precast RC industrial buildings damaged by the 2012 Emilia (Italy) earthquakes", Earthq. Eng. Struct. Dyn., 46(14), 2317-2335. https://doi.org/10.1002/eqe.2906
  16. Cohen, J.M. and Powell, G.H. (1993). "A design study of an energy dissipating cladding system", Earthq. Eng. Struct. Dyn., 22(7), 617-632. https://doi.org/10.1002/eqe.4290220706
  17. Dal Lago, B. (2015), "Seismic performance of precast structures with dissipative cladding panel connections", Ph.D. Dissertation, Politecnico di Milano, Italy.
  18. Dal Lago, B. and Ferrara, L. (2018), "Efficacy of roof-to-beam mechanical connections on the diaphragm behaviour of precast decks with spaced roof elements", Eng. Struct., 176, 681-696. https://doi.org/10.1016/j.engstruct.2018.09.027
  19. Dal Lago, B. and Lamperti Tornaghi, M. (2018), "Sliding channel cladding connections for precast structures subjected to earthquake action", Bull. Earthq. Eng., 16(11), 5621-5646. https://doi.org/10.1007/s10518-018-0410-0
  20. Dal Lago, B. and Molina, F.J. (2018), "Assessment of a capacity spectrum design approach against cyclic and seismic experiments on full-scale precast RC structures", Earthq. Eng. Struct. Dyn., 47(7), 1591-1609. https://doi.org/10.1002/eqe.3030
  21. Dal Lago, B., Bianchi, S. and Biondini, F. (2018a), "Diaphragm effectiveness of precast concrete structures with cladding panels under seismic action", Bull. Earthq. Eng., 17(1), 473-495. https://doi.org/10.1007/s10518-018-0452-3
  22. Dal Lago, B., Biondini, F. and Toniolo, G. (2017a), "Frictionbased dissipative devices for precast concrete panels", Eng. Struct., 147, 356-371. https://doi.org/10.1016/j.engstruct.2017.05.050
  23. Dal Lago, B., Biondini, F. and Toniolo, G. (2018b), "Experimental investigation on steel W-shaped folded plate dissipative connectors for precast cladding panels", J. Earthq. Eng., 22(5), 778-800. https://doi.org/10.1080/13632469.2016.1264333
  24. Dal Lago, B., Biondini, F. and Toniolo, G. (2018c), "Experimental tests on multiple-slit devices for precast concrete panels", Eng. Struct., 167, 420-430. https://doi.org/10.1016/j.engstruct.2018.04.035
  25. Dal Lago, B., Biondini, F. and Toniolo, G. (2018d), "Seismic performance of precast concrete structures with energy dissipating cladding panel connection systems", Struct. Concrete, 19, 1908-1926. https://doi.org/10.1002/suco.201700233
  26. Dal Lago, B., Biondini, F., Toniolo, G. and Lamperti Tornaghi, M. (2017b), "Experimental investigation on the influence of silicone sealant on the seismic behaviour of precast facades", Bull. Earthq. Eng., 15(4), 1771-1787. https://doi.org/10.1007/s10518-016-0045-y
  27. Dal Lago, B., Negro, P. and Dal Lago, A. (2018e), "Seismic design and performance of dry-assembled precast structures with adaptable joints", Soil Dyn. Earthq. Eng., 106, 182-195. https://doi.org/10.1016/j.soildyn.2017.12.016
  28. Dal Lago, B., Toniolo, G. and Lamperti Tornaghi, M. (2016), "Influence of different mechanical column-foundation connection devices on the seismic behaviour of precast structures", Bull. Earthq. Eng., 14(12), 3485-3508. https://doi.org/10.1007/s10518-016-0010-9
  29. EN 1991-1:2004 (2004), Eurocode 1: Actions on Structures. Part 1: General Actions, European Committee for Standardization, Brussels, Belgium.
  30. EN 1992-1-1:2005 (2005), Eurocode 2: Design of Concrete Structures. Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
  31. EN 1998-1:2004 (2004), Eurocode 8: Design of Structures for Earthquake Resistance. Part 1: General Rules, Seismic Actions and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
  32. fib (2010), Model Code for Concrete Structures, Federation Internationale du Beton/International Federation for Structural Concrete, Lausanne, Switzerland.
  33. Fischinger, M., Kramar, M. and Isakovic, T. (2008), "Cyclic response of slender RC columns typical of precast industrial buildings", Bull. Earthq. Eng., 6(3), 519-534. https://doi.org/10.1007/s10518-008-9064-7
  34. Fleischman, R.B., Sause, R., Pessiki, S. and Rhodes, A.B. (1998). "Seismic behavior of precast parking structure diaphragms", PCI J., 43(1), 38-53. https://doi.org/10.15554/pcij.01011998.38.53
  35. G+D Computing (2010), Using Strand7 (Straus7) - Introduction to the Strand7 finite element analysis system, Ed. 3, Strand7 Pty Limited, Sidney, Australia.
  36. Gaiotti, R. and Smith, B.S. (1992), "Stiffening of momentresisting frame by precast concrete cladding", PCI J., 37(5), 80-92. https://doi.org/10.15554/pcij.09011992.80.92
  37. Ghosh, S.K. and Cleland, N. (2012), "Observations from the February 27, 2010, earthquake in Chile", PCI J., 57(1), 52-75. https://doi.org/10.15554/pcij.01012012.52.75
  38. Gjelvik, A. (1973), "Interaction between frames and precast panel walls", J. Struct. Div., ASCE, 100(2), 405-426. https://doi.org/10.1061/JSDEAG.0003715
  39. Henry, R.M. and Roll, F. (1986), "Cladding-frame interaction", J. Struct. Eng., ASCE, 112(4), 815-834. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:4(815)
  40. Hobelmann, J.P., Schachter, M. and Cooper, M.C. (2012), "Architectural precast concrete panel systems used for lateralforce resistance", PCI J., 57(1), 124-134. https://doi.org/10.15554/pcij.01012012.124.134
  41. Magliulo, G., Bellotti, D., Cimmino, M. and Nascimbene, R. (2018), "Modeling and seismic response analysis of RC precast Italian code-conforming buildings", J. Earthq. Eng., 22(2), 140-167. https://doi.org/10.1080/13632469.2018.1531093
  42. Magliulo, G., Ercolino, M. and Manfredi, G. (2014a), "Influence of cladding panels on the first period of one-story precast buildings", Bull. Earthq. Eng., 13(5), 1531-1555. https://doi.org/10.1007/s10518-014-9657-2
  43. Magliulo, G., Ercolino, M., Petrone, C., Coppola, O. and Manfredi, G. (2014b), "Emilia earthquake: the sesmic performance of precast RC buildings", Earthq. Spectra, 30(2), 891-912. https://doi.org/10.1193/091012EQS285M
  44. Metelli, G., Bettini, N. and Plizzari, G. (2011), "Experimental and numerical studies on the behaviour of concrete sandwich panels", Eur. J. Environ. Civil Eng., 15(10), 1465-1481. https://doi.org/10.1080/19648189.2011.9723354
  45. Molina, F.J., Marazzi, F., Viaccoz, B. and Bosi, A. (2013), "Stability and accuracy in hybrid test example", Earthq. Eng. Struct. Dyn., 42(3), 469-475. https://doi.org/10.1002/eqe.2206
  46. Negro, P. and Lamperti Tornaghi, M. (2017), "Seismic response of precast structures with vertical cladding panels: the SAFECLADDING experimental campaign", Eng. Struct., 132, 205-228. https://doi.org/10.1016/j.engstruct.2016.11.020
  47. Negro, P., Bournas, D.A. and Molina, F.J. (2013), "Pseudodynamic Tests on a full-scale 3-storey precast concrete building: global response", Eng. Struct., 57, 594-608. https://doi.org/10.1016/j.engstruct.2013.05.047
  48. Okazaki, T., Nakashima, M., Suita, K. and Matsumiya, T. (2007), "Interaction between cladding and structural frame observed in a full-scale steel building test", Earthq. Eng. Struct. Dyn., 36(1), 35-53. https://doi.org/10.1002/eqe.618
  49. Palsson, H., Goodno, B.J., Craig, J.I. and Will, K.M. (1984), "Cladding influence on dynamic response of tall buildings", Earthq. Eng. Struct. Dyn., 12(2), 215-228. https://doi.org/10.1002/eqe.4290120206
  50. Pantoli, E., Hutchinson, T.C., McMullin, K.M., Underwood, G.A. and Hildebrand, M.J. (2016), "Seismic-drift-compatible design of architectural precast concrete cladding: tieback connections and corner joints", PCI J., 61(4), 38-52. https://doi.org/10.15554/pcij.03012016.38.55
  51. Pecce, M., Ceroni, F., Bibbo, F.A. and De Angelis, A. (2014), "Behaviour of RC buildings with large lightly reinforced walls along the perimeter", Eng. Struct., 73, 39-53. https://doi.org/10.1016/j.engstruct.2014.04.038
  52. Pinelli, J.P., Craig, J.I., Goodno, B.J. and Hsu, C.C. (1993), "Passive control of building response using energy dissipating cladding connections", Earthq. Spectra, 9(3), 529-546. https://doi.org/10.1193/1.1585728
  53. Pinelli, J.P., Moore, C., Craig, J.I. and Goodno, B.J. (1992), "Experimental testing of ductile cladding connections for building facades", Struct. Des. Tall Spec. Build., 1(1), 57-72. https://doi.org/10.1002/tal.4320010106
  54. Pinelli, J.P., Moore, C., Craig, J.I. and Goodno, B.J. (1996), "Testing of energy dissipating cladding connections", Earthq. Eng. Struct. Dyn., 25(2), 129-147. https://doi.org/10.1002/(SICI)1096-9845(199602)25:2<129::AID-EQE542>3.0.CO;2-0
  55. Psycharis, I.N., Kalyviotis, I.M. and Mouzakis, H.P. (2018), "Experimental investigation of the response of precast concrete cladding panels with integrated connections under monotonic and cyclic loading", Eng. Struct., 159, 75-88. https://doi.org/10.1016/j.engstruct.2017.12.036
  56. Sargin, M. and Handa, V.K. (1969), "A general formulation for the stress-strain properties of concrete", Solid Mech. Div., 3, 1-27.
  57. Savoia, M., Buratti, N. and Vincenzi, L. (2017), "Damage and collapses in industrial precast buildings after the 2012 Emilia earthquake", Eng. Struct., 137, 162-180. https://doi.org/10.1016/j.engstruct.2017.01.059
  58. Scotta, R., De Stefani, L. and Vitaliani, R. (2015), "Passive control of precast building response using cladding panels as dissipative shear walls", Bull. Earthq. Eng., 13, 3527-3552. https://doi.org/10.1007/s10518-015-9763-9
  59. Takeda, T., Sozen, M.A. and Nielsen, N.N. (1970), "Reinforced concrete response to simulated earthquakes", J. Struct. Div., ASCE, 96(12), 2557-2573. https://doi.org/10.1061/JSDEAG.0002765
  60. Toniolo, G. and Colombo, A. (2012), "Precast concrete structures: the lesson learnt from L'Aquila earthquake", Struct. Concrete, 13(2), 73-83. https://doi.org/10.1002/suco.201100052
  61. Toniolo, G. and Dal Lago, B. (2017), "Conceptual design and fullscale experimentation of cladding panel connection systems of precast buildings", Earthq Eng. Struct. Dyn., 46(14), 2565-2586. https://doi.org/10.1002/eqe.2918
  62. Wang, M.L. (1987), "Cladding performance on a full scale test frame", Earthq. Spectra, 3(1), 119-173. https://doi.org/10.1193/1.1585423
  63. Yuksel, E., Karadogan, F., Ozkaynak, H., Khajehdei, A., Gullu, A., Smyrou, E. and Bal, I.E. (2018), "Behaviour of steel cushions subjected to combined actions", Bull. Earthq. Eng., 16(2), 707-729. https://doi.org/10.1007/s10518-017-0217-4
  64. Zoubek, B., Fischinger, M. and Isakovic, T. (2016), "Cyclic response of hammer-head strap cladding-to-structure connections used in RC precast buildings", Eng. Struct., 119, 135-148. https://doi.org/10.1016/j.engstruct.2016.04.002
  65. Zoubek, B., Fischinger, M. and Isakovic, T. (2018), "Seismic response of short restrainers used to protect cladding panels in RC precast buildings", J. Vib. Control, 24(4), 645-658. https://doi.org/10.1177/1077546316659780

Cited by

  1. Multi-Stripe Seismic Assessment of Precast Industrial Buildings With Cladding Panels vol.7, 2019, https://doi.org/10.3389/fbuil.2021.631360