DOI QR코드

DOI QR Code

Fermentation Characteristics and Anti-Obesity Effects of Cheonnyuncho (Oputia Humifusa) Fruit Fermented with Lactobacillus plantarum in 3T3-L1 Cells

Lactobacillus plantarum으로 발효한 천년초 선인장 열매의 발효특성 및 in vitro 항비만 효과

  • Received : 2018.11.26
  • Accepted : 2019.02.08
  • Published : 2019.02.28

Abstract

This study was conducted to investigate the fermentation characteristics and anti-obesity effects of Cheonnyuncho (Oputia Humifusa) fruit fermented with Lactobacillus plantarum SRCM 100320 (FC). The pH gradually decreased from 4.77 to 3.63 at 72 hours during fermentation. Counts of lactic acid bacteria, total polyphenol and flavonoid contents and DPPH scavenging activity were the highest at 48 hours during fermentation. Evaluation of the composition of polyphenols and flavonoids of FC fermented at 48 hours by HPLC revealed hyperoside (quercetin 3-galactoside), luteolin and kaempferol were the major components. The hyperoside content of FC was decreased, while the luteolin and kaempferol contents of FC were increased compared to unfermented Cheonnyuncho (NFC). Evaluation of the anti-obesity effects of FC in 3T3L-1 cells revealed that the accumulation of triglyceride was inhibited by about 27.3% in cells treated with FC at $150{\mu}g/mL$ compared to NFC. These findings indicate FC has the potential for use as an anti-obesity material.

Keywords

SSMHB4_2019_v34n1_75_f0001.png 이미지

Changes of scavenging activity of DPPH during fermentation periods of Cheonnyuncho (Oputia Humifusa) fruit powder with L. plantarum.

SSMHB4_2019_v34n1_75_f0002.png 이미지

Changes of total polyphenols and total flavonoids during fermentation periods of Cheonnyuncho (Oputia Humifusa) fruit powder with L. plantarum.

SSMHB4_2019_v34n1_75_f0003.png 이미지

Effect of unfermented cheonnyuncho (A) and fermented cheonnyuncho (B) on cytotoxicity in 3T3-L1 cells.

SSMHB4_2019_v34n1_75_f0004.png 이미지

Effect of unfermented cheonnyuncho (NFC) and fermented cheonnyuncho (FC) on the lipid droplet accumulation (A) and oil red O levels (B) during the differentiation of 3T3-L1 cells.

SSMHB4_2019_v34n1_75_f0005.png 이미지

Effect of unfermented cheonnyuncho (NFC) and fermented cheonnyuncho (FC) on the triglyceride accumulation during the differentiation of 3T3-L1 cells.

Proximate composition of the Cheonnyuncho (Oputia Humifusa) fruit powder

SSMHB4_2019_v34n1_75_t0001.png 이미지

pH and viable cell counts of Cheonnyuncho (Oputia Humifusa) fruit powder fermented by L. plantarum

SSMHB4_2019_v34n1_75_t0002.png 이미지

Hyperoside (quercetin 3-galactoside), luteolin and kaempferol contents of Cheonnyuncho (Oputia Humifusa) fruit powder fermented by L. plantarum

SSMHB4_2019_v34n1_75_t0003.png 이미지

References

  1. AOAC. 2000. Official Methods of Analysis of AOAC International. 17th ed. rev2. Ch. 32, Association of Official Analytical Communities, Gaithersbrug, USA, pp 7-10
  2. Azuma K, Nakayama M, Koshioka M, Ippoushi K, Yamaguchi Y, Kohata K, Yamauchi Y, Ito H, Higashio H. 1999. Phenolic antioxidants from the leaves of Corchorus olitorius L. J. Agric. Food Chem., 47(10):3963-3966 https://doi.org/10.1021/jf990347p
  3. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature. 181:1999-1200 https://doi.org/10.1038/1811199a0
  4. Braune A and Blaut M. 2016 Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes.7(3):216-234 https://doi.org/10.1080/19490976.2016.1158395
  5. Cha MN, Jun HI, Lee WJ, Kim MJ, Kim MK, Kim YS. 2013. Chemical composition and antioxidant activity of Korean cactus (Opuntia humifusa) fruit. Food Sci. Biotechnol., 22(2):523-529 https://doi.org/10.1007/s10068-013-0110-0
  6. Chang CJ, Tzeng TF, Liou SS, Chang YS, Liu IM. 2011. Kaempferol Regulates the Lipid-Profile in High-Fat Diet-Fed Rats through an Increase in Hepatic PPAR${\alpha}$ Levels. Planta Med. 77(17):1876-1882 https://doi.org/10.1055/s-0031-1279992
  7. Chen H, Zuo Y, Deng Y. 2001. Separation and determination of flavonoids and other phenolic compounds in cranberry juice by high-performance liquid chromatography. J. Chromatogr. A., 913(1-2):387-395 https://doi.org/10.1016/S0021-9673(00)01030-X
  8. Cho IK, Jin SW, Kim YD. 2009. Analysis of components in the parts of Opuntia ficus indica from Shinan Korea. Korean J. Food Preserv., 16(5):742-746
  9. Choi I, Kim Y, Park Y, Seog H, Choi H. 2007. Anti-obesity activities of fermented soygerm isoflavones by Bifidobacterium breve. Biofactors, 29(2-3):105-112 https://doi.org/10.1002/biof.552029201
  10. Haslam D. 2016. Weight management in obesity-past and present. Int. J. Clin. Pract., 70(3):206-217 https://doi.org/10.1111/ijcp.12771
  11. Hwang HJ, Kang MS, Kim BK, Jung BM, Kim MH. 2012. The effect of Opuntia humifusa seed extracts on platelet aggregation and serum lipid level in ovariectomized rats. J. Life Sci., 22(12):1680-1687 https://doi.org/10.5352/JLS.2012.22.12.1680
  12. Jan SY, Kim MH, Hong GJ. 2013. Quality changes of sulgidduk added Cheonnyuncho (Opuntia humifusa) fruit powder during storage. Korean J. Food Cookery Sci., 29(5):501-509 https://doi.org/10.9724/kfcs.2013.29.5.501
  13. Jeon BS, Park JW, Kim BK, Kim HK, Jung TS, Hahm JR, Kim DR, Cho YS, Cha JY. 2005. Fermented mushroom milksupplemented dietary fiber prevents the onset of obesity and hypertriglyceridemia in Otsuka Long-Evans Tokushima Fatty rats. Diabetes Obes. Metab., 7(6):709-715 https://doi.org/10.1111/j.1463-1326.2005.00456.x
  14. Joo SK. 2016. Radical-scavenging activities of fermented cactus cladodes (Opuntia humifusa Raf.). Korean Soc. Food Sci. Nutr., 29(2):200-205 https://doi.org/10.9799/ksfan.2016.29.2.200
  15. Jung BM, Shin MO, Kim HR. 2012. The effects of antimicrobial, antioxidant, and anticancer properties of Opuntia humifusa stems. J. Korean Soc. Food Sci. Nutr., 41(1):20-25 https://doi.org/10.3746/jkfn.2012.41.1.020
  16. Jung BM, Shin MO. 2011. Physiological activities of Opuntia humifusa petal. Korean J. Food Cookery Sci., 27(5):523-530 https://doi.org/10.9724/kfcs.2011.27.5.523
  17. Jung YM, Lee DS, Kwon K. 2017. The Characterization of L. plantarum-fermented Opuntia humifusa. J. Korea Convergence Society. 8(1):107-114 https://doi.org/10.15207/JKCS.2017.8.1.107
  18. Kamalakkannan S, Rajendran R, Venkatesh RV, Clayton P, Akbarsha MA. 2011. Effect of Caralluma fimbriata extract on 3T3-L1 pre-adipocyte cell division. Food and Nutrition Sciences, 2(4):329-336 https://doi.org/10.4236/fns.2011.24047
  19. Kang JG, Park CY. 2012. Anti-Obesity Drugs: A Review about Their Effects and Safety. Diabetes Metab. J., 36(1)13-25 https://doi.org/10.4093/dmj.2012.36.1.13
  20. Kasturi, R, Joshi VC. 1982. Hormonal regulation of stearoyl coenzyme Adesaturase activity and lipogenesis during adipose conversion of 3T3-L1 cells. J. Biol. Chem., 257(20):12224-12230 https://doi.org/10.1016/S0021-9258(18)33704-9
  21. Kim H, Park SH. 2009. Metabolic profiling and discrimination of two cacti cultivated in Korea using HPLC-ESI-MS and multivariate statistical analysis. J. Korean Soc. Appl. Biol. Chem., 52(4):346-352 https://doi.org/10.3839/jksabc.2009.062
  22. Kim MH. 2014. Screening of biological activities of ethanol extracts from fermented Gastrodia elata Blume. Korean J. Food & Nutr., 27(5):837-844 https://doi.org/10.9799/ksfan.2014.27.5.837
  23. Kim MH. 2015. Biological activity of extracts from fermented opuntia humifusa with 3 different. Korean J. Food Nutr., 28(4):620-627 https://doi.org/10.9799/ksfan.2015.28.4.620
  24. Kim YJ, Park CI, Kim SJ, Ahn EM. 2014. Antioxidant and inflammatory mediators regulation effects of the roots of Opuntia humifusa. J Appl. Biol. Chem., 57(1):1-5 https://doi.org/10.3839/jabc.2014.001
  25. Kong BM, Park MJ, Min JW, Kim HB, Kim SH, Kim SY, Yang DC. 2008. Physico-chemical characteristics of white, fermented and red ginseng extracts. J. Ginseng Res., 32(3):238-243 https://doi.org/10.5142/JGR.2008.32.3.238
  26. Ladabaum U, Mannalithara A, Myer PA, Singh G. 2014. Obesity, abdominal obesity, physical activity, and caloric intake in US adults: 1988 to 2010. Am. J. Med., 127(8):717-727. https://doi.org/10.1016/j.amjmed.2014.02.026
  27. Lee G, Choi HY, Yang SJ. 2015. Effects of dietary and physical activity interventions on metabolic syndrome: A Metaanalysis. J. Korean Acad Nurs., 45(4):483-494 https://doi.org/10.4040/jkan.2015.45.4.483
  28. Lee Y, Oh J, Jeong YS. 2015. Lactobacillus plantarum-mediated conversion of flavonoid glycosides into flavonols, quercetin, and kaempferol in Cudrania tricuspidata leaves. Food Sci. Biotechnol., 24(5):1817-1821 https://doi.org/10.1007/s10068-015-0237-2
  29. Lee YJ, Choi HS, Seo MJ, Jeon HJ, Kim KJ, Lee BY. 2015. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish. Food Funct., 6(8):2824-2833 https://doi.org/10.1039/C5FO00481K
  30. Lee YS, Choi BK, Lee HJ, Lee DR, Cheng J, Lee WK, Yang SH, Suh JW. 2015. Monascus pilosus-fermented black soybean inhibits lipid accumulation in adipocytes and in high-fat diet-induced obese mice. Asian Pac. J. Trop. Med., 8(4):276-282 https://doi.org/10.1016/S1995-7645(14)60330-8
  31. Lew EA. 1985. Mortality and weight: insured lives and the American Cancer Society studies. Ann. Intern. Med., 103(6):1024-1029 https://doi.org/10.7326/0003-4819-103-6-1024
  32. Matsuzawa Y, Shimomura I, Nakamura T, Keno Y, Kotani K, Tokunaga K. 1995. Pathophysiology and Pathogenesis of Visceral Fat Obesity. Obes. Res., 3(S2):187s-194s https://doi.org/10.1002/j.1550-8528.1995.tb00462.x
  33. Meckes-Lozoya M, Ibanez-Camacho R. 1989. Hypoglucaemic activity of Opuntia streptacantha throughtout its annual cycle. Am. J. Chin. Med., 17(3-4):221-224 https://doi.org/10.1142/S0192415X89000310
  34. Moreno MI, Isia MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentian. J. Ethnopharmacol., 71(1-2):109-114 https://doi.org/10.1016/S0378-8741(99)00189-0
  35. Park MJ, Lee SP. 2013. Physicochemical characteristics of cheonnyuncho fruit (Opuntia humifusa) fermented by Leuconostoc mesenteroides SM. Korean J. Food Sci. Technol., 45(4):434-440 https://doi.org/10.9721/KJFST.2013.45.4.434
  36. Park MK, Lee YJ, Kang ES. 2005. Hepatoprotective effect of Cheonnyuncho (Opuntia humifusa) extract in rats treated carbon tetrachloride. Korean J. Food Sci. Technol., 37(5): 822-826
  37. Pellegrini N, Re R, Yang M, Rice-Evans C. 1999. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2-azinobis (3-ethylenebenzothiazoline-6-sulfonic acid) radical cation decolorization assay. Methods Enzymo, 299:379-389 https://doi.org/10.1016/S0076-6879(99)99037-7
  38. Ross JA and Kasum CM. 2002. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22:19-34 https://doi.org/10.1146/annurev.nutr.22.111401.144957
  39. Shin DS and Han GJ. 2016. Chemical comsitions and antioxidant activities of cheonnyuncho (Opuntia humifusa) stems and fruit. Korean J. Food Preserv. 23(1): 89-96. https://doi.org/10.11002/kjfp.2016.23.1.89
  40. Wang LC, Pan TM, Tsai TY. 2018. Lactic acid bacteria-fermented product of green tea and Houttuynia cordata leaves exerts antiadipogenic and anti-obesity effects. J. Food Drug Anal., 26(3):973-984 https://doi.org/10.1016/j.jfda.2017.11.009
  41. Yoon JA, Son YS. 2009. Effects pf fruits and stems of Oputia ficus-indica on blood glucose and lipid metabolism in streptozotocin-induced diabetic rats. J. Korean Soc. Food Sci. Nutr., 38(2):146-153 https://doi.org/10.3746/jkfn.2009.38.2.146
  42. Yun JW. 2010. Possible anti-obesity therapeutics from nature-a review. Phytochemistry, 71(14-15):1625-1641 https://doi.org/10.1016/j.phytochem.2010.07.011
  43. World health organization (WHO). Global Health Observatory (GHO) data. Top 10 causes of death. Available from: http://www.who.int/en/news-room/fact-sheets/detail/thetop-10-causes-of-death, [accessed 2018.11.02.]
(34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
Copyright (C) KISTI. All Rights Reserved.