
INTRODUCTION

Most neurons in the brain are connected to each other 
through excitatory or inhibitory synapses. Dysregulation of 
excitatory/inhibitory neurotransmission (E/I imbalance) has 
been implicated as an underlying pathophysiological mecha-
nism of psychiatric disorders, including schizophrenia and au-
tism spectrum disorder (Kehrer et al., 2008; Gao and Penzes, 
2015; Nelson and Valakh, 2015; Uzunova et al., 2016). NM-
DAR antagonists such as ketamine and phencyclidine (PCP) 
induce a schizophrenia-like psychosis in both humans and 
animal models (Javitt et al., 2012). Likewise, MK801 (dizocil-

pine), which inhibits NMDA receptors by binding to the recep-
tor in its activated state, has been used to generate a pharma-
cologic model of psychosis.

The behavioral abnormalities induced by MK801 include 
behavioral inflexibility (Svoboda et al., 2015), impaired spatial 
memory (van der Staay et al., 2011), social withdrawal (Rung 
et al., 2005), and repetitive behaviors (Nozari et al., 2014). 
Acute or chronic intraperitoneal injection of MK801 has been 
reported to dysregulate some structural and behavioral fea-
tures of brain function both in rats and mice in ways reminis-
cent of psychiatric disorders, including schizophrenia and au-
tism spectrum disorder (Moy et al., 2013; Nozari et al., 2014; 
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Wu et al., 2016). Accordingly, compounds such as glycine, D-
serine, or D-cycloserine, which activate NMDAR by binding to 
the glycine site on the receptor, convey significant therapeutic 
effects in animal models of schizophrenia. 

In spite of the wide use of MK801 injection to model psychi-
atric disorders and recent reports suggesting etiological and 
therapeutic roles of NMDARs in relieving autism-like symp-
toms in preclinical studies (Won et al., 2012; Kim et al., 2014; 
Lee et al., 2015; Kim et al., 2017), few studies have examined 
the effects of peripheral administration of NMDA on neurobe-
havioral and neurobiological features in experimental animals. 
More recently, we systemically treated ICR mice with either 
AMPAR agonists or antagonists and observed social behav-
ioral impairments in mice, adding additional support for the E/I 
imbalance theory of ASD (Kim et al., 2018). Although there 
are relatively ample behavioral studies using antagonists of 
NMDARs, few studies have examined the neurobehavioral 
features of experimental animals after treatment with NMDAR 
agonists mainly due to adverse outcomes such as induction of 
seizure at high concentrations. Administration of high concen-
trations of NMDAR agonists into the CNS can induce neuronal 
cell death and general toxicity, which may limit the analysis of 
more subtle behavioral characteristics. It has been suggested 
that intrathecally administered NMDA can induce nocicep-
tive responses, such as biting directed toward the hind paws 
(Raigorodsky and Urca, 1990; Sakurada et al., 1990), where-
as high concentrations of NMDA induce neurotoxic outcomes 
such as seizure, especially in younger animals (Schoepp et 
al., 1990; Kabova et al., 1999). 

In the present study, we found that systemic administra-
tion of NMDA to juvenile mice induced nociceptive behavior, 
as well as repetitive tail biting/licking behaviors. These ef-
fects lasted at least 24 h in a concentration and animal age-
dependent manner without inducing massive BBB breakdown 
or neuronal cell death. Altered nociceptive sensitivity and re-
petitive/stereotyped behaviors are frequently observed across 
many psychiatric conditions both in human and experimental 
animals. Therefore, inducing nociceptive/repetitive behaviors 
in systemically NMDA-injected juvenile rodents may provide 
versatile animal models not only for investigations of the phar-
macological and molecular mechanisms of such behaviors, 
but also as an efficient means to screen therapeutic agents 
regulating such behavioral abnormalities. 

MATERIALS AND METHODS

Animals
Outbred ICR mice were purchased from Orient Bio (Gapy-

eong, Korea). Animals were maintained in controlled environ-
ment at a temperature range of 23 ± 2°C and humidity range 
of 50 ± 10% on a conditioned circadian cycle (lights on: 2:00 
pm, lights off: 2:00 am). Mice were housed in standard poly-
carbonate cages (20×26×13 cm) and allowed to freely access 
food and water. All procedures including animal treatments 
and maintenance were approved by the Principles of Labora-
tory Animal Care (NIH publication No. 85-23, revised 1985) 
and were conducted according to the Animal Care and Use 
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Fig. 1. Intraperitoneal NMDA administration increased nociceptive/repetitive behaviors, especially tail biting/licking behaviors. Nociceptive/
repetitive behaviors were analyzed after intraperitoneal administration of saline or NMDA at 75 mg/kg to 3-4 weeks old mice (P24-P26). 
(A) Representative pictures of NMDA-induced nociceptive/repetitive behaviors. (A-1) Grooming behaviors. (A-2) Tail biting/licking behav-
iors. (B) Duration of grooming behaviors. (C) Frequency of grooming behaviors. (D) Duration of tail biting/licking behaviors. (E) Frequency 
of tail biting/ \licking behaviors. The number of animals per condition was as follows: Vehicle group with saline (n=8) and 75 mg/kg NMDA 
group (n=12). Mouse behavior was recorded for 20 min at each time point. All data are expressed as the mean ± SEM. *p<0.05, **p<0.01, 
***p<0.001 vs. Vehicle. Veh=Saline-injected mice (Vehicle group), NMDA 75 mg/kg=NMDA-exposed mice in the 75 mg/kg group.
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Committee of Konkuk University, Korea (KUB161169).

Treatments
N-methyl-D-aspartate (NMDA, Cat No. M1360) was ob-

tained from Tokyo Chemical Industry (Tokyo, Japan) and Gla-
cial acetic acid (Cat No. 1005-4400) was purchased from Dae-
jung Chemical (Seoul, Korea). NMDA and acetic acid were 
dissolved and diluted using normal saline (0.6 or 0.7% v/v, 
respectively). The dosage of injection was decided according 
to the body weight of mice on the day of experiment (10 ml/
kg, i.p.).

Behavioral studies
Behavioral observation: 1 h before starting the experi-

ment, each mouse was put in a transparent polycarbonate 
cage (20×26×13 cm) with corncob bedding to a depth of 5 
cm. The mice were injected according to body weight. Imme-
diately after intraperitoneal NMDA or saline injection, the mice 
were placed in the transparent cage and each time-course of 
experiment was recorded. The time and frequency of nocicep-
tive and repetitive behaviors, such as grooming, and tail biting 
and licking, were measured through video recordings at each 
time point.

Hot plate test: The hot plate test was conducted according 
to previous reports (Ogren and Berge, 1984; Tjolsen et al., 
1991). The hot plate apparatus comprised a heatable metal 
plate with a temperature adjustable system. The temperature 
at the edges of the plate was 1°C lower than that at other 
surfaces. Except for the edges of the plate, the surface tem-
perature was constant within 0.3°C. The animals (n=8) were 
treated with saline or NMDA (50 or 75 mg/kg; i.p). After 30 min, 
mice were placed on the hot plate at a temperature below the 
nociceptive threshold (about 35°C). The heating rate was 1°C/
min. Nociceptive responses such as latency of paw licking or 
jumping were measured by an observer blind to the treatment 
condition. 

Writhing test: Approximately 1 h prior to the writhing test, 
the mice were habituated to an individual cage which was also 
used as the observation chamber in the behavioral testing 
room. The animals (n=8-10) were treated with saline or NMDA 
(50 or 75 mg/kg). After 30 min, writhing was induced by intra-

peritoneal injection of 0.6% or 0.7% acetic acid at a volume 
of 10 ml/kg body weight. We counted the number of writhing 
behaviors (stretching, extension of hind legs, or contraction of 
the abdomen) for 20 min.

Tissue preparation
Mice in each group (n=8-9 per group) were sacrificed for 

tissue preparation. The spinal cord, thalamus, and prefrontal 
cortices were isolated, immediately frozen in liquid nitrogen, 
and then stored at –80°C.

Liquid chromatography-tandem mass spectrometry  
(LC-MS/MS)

Three mice from each group were sacrificed and the tis-
sue samples were isolated as described above in section 2.4. 
For the sample analysis, each segment of tissue was homog-
enized with a 3-fold volume of DDW. Samples were added to 
50% acetonitrile containing an internal standard at a ratio of 
1:4 and sonicated for 30 min. The tube was centrifuged at 842 
g at 4°C for 10 min. The supernatants were analyzed using 
an API 3200 QQQ LC/MS/MS system with an Agilent 1200 
series binary pump. Turbo Spray was utilized for ionization in 
positive ion mode. The samples were resolved on a YMC triart 
C18 (2.1×100 nm, 3 µm). The mobile phase was generated by 
mixing eluent A (0.1% formic acid in water) and eluent B (0.1% 
formic acid in acetonitrile). The flow rate was 0.25 ml/min.

Evans blue assay
At 1 h after saline or NMDA injection, 3 mice from each 

group were anesthetized with Zoletil and Rompun in saline. 
Evans blue dye (2% wt/vol in PBS) in a volume of 2 ml/kg was 
given by tail vein injection and the brain was removed.

Immunohistochemistry
A 26 G needle was inserted into left ventricle of the heart 

and transcardial perfusion was performed with 0.9% saline fol-
lowed by cold 4% paraformaldehyde in phosphate buffered 
saline (PBS) (pH 7.4). The brain was isolated and post-fixed 
in the same fixative at 4°C and then cryoprotected overnight 
in 30% (w/v) sucrose in phosphate-buffered saline (PBS). The 
samples were sectioned at a 20 µm thickness on a cryostat 
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and then the sections were preserved in 24-well plates with 
tissue stock solution. Sections were blocked in a solution con-
taining 10% Horse serum, 0.3% Triton X-100 in PBS for 1 h 
at room temperature. Sections were then incubated overnight 
at 4°C with the following primary antibodies: rabbit anti-IgG 
(1/500; abcam, Cambridge, UK), mouse anti-NeuN (1:500; 
Millipore, Burlington, MA, USA), rabbit anti-E-cadherin (1:500; 
Santa Cruz Biotechnology, Dallas, TX, USA), or mouse anti-
ZO-1 (1:500; Invitrogen, Carlsbad, CA, USA). After washing 
samples three times in PBS containing 1.5% Horse serum 
and 0.1% Triton X-100, the sections were incubated for 2 h at 
room temperature with Alexa 488 and Alexa 546 as the sec-
ondary antibodies. Images were visualized and imaged using 
a confocal microscope (ZEN2009, Carl Zeiss, Oberkochen, 
Germany).

Statistical analysis
Data were quantified and presented as mean ± standard 

error of the mean (SEM). Statistical analyses were conduct-
ed using one-way analysis of variance (ANOVA) followed by 
Newman-Keuls analysis. Two-way ANOVA was used to iden-
tify the interaction between two factors. Differences were con-
sidered statistically significant when the p value was less than 
0.05 (p<0.05). All statistical analyses were conducted using 
GraphPad prism (version 5) software (San Diego, CA, USA).

RESULTS

Effects of intraperitoneal NMDA injection on nociceptive/
repetitive behaviors

After intraperitoneal NMDA administration, stereotypic be-
haviors like freezing, hyperactivity, and curling were observed, 
among which grooming and biting/licking behaviors were par-
ticularly noticeable (Fig. 1A-1, 1A-2). Therefore, we measured 
the duration and frequency of grooming or tail biting/licking 
behaviors. Note that as tail biting or licking are hard to dif-
ferentiate upon close observation, they are counted as one 
behavioral entity. 

In behavioral analysis performed using the time bin method, 
the grooming duration of NMDA-induced mice group was high-
er than that of the vehicle group in the early time points and 
gradually decreased up to 24 h (Fig. 1B). Similarly, the number 
of grooming bouts increased in the NMDA-treated mice group, 
but it was not significantly different to that in the vehicle group 
after 6 h (Fig. 1C). However, the group injected with NMDA at 
75 mg/kg demonstrated a significantly increased duration of 
tail biting/licking behaviors compared with the vehicle group at 
all time points examined (Fig. 1D). Additionally, the number of 
tail biting/licking bouts were also enhanced in NMDA-exposed 
mice, but not in the vehicle group (Fig. 1E).

We next examined the dose-dependency of NMDA effects 
on tail biting/licking behaviors. The doses of NMDA used in 
this study were 20, 30, 40, 50, and 75 mg/kg. The duration of 
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tail biting/licking was similar to the vehicle group in the 20, 30, 
and 40 mg/kg NMDA groups. Interestingly, the 50 and 75 mg/
kg NMDA-injected groups displayed statistically significant in-
creases in tail biting/licking duration and frequency compared 
to the vehicle group (Fig. 2A, 2B). We observed a red skin 
injury on mouse tails after 24 h in the NMDA 50 and 75 mg/
kg groups at a frequency of 50% and 57.1% wounded mice, 
respectively (Fig. 2C).

In order to determine whether the effect of NMDA is age-
dependent, we treated the mice at 3, 4, 5, 6, 7, and 8 weeks 
of age with 50 mg/kg NMDA. Tail biting/licking behaviors in-
creased at 0.5 and 1 h in all groups, while the tail biting/licking 
behaviors at 6, 7, and 8 week old mice were similar to those 
of the vehicle group at 3 h. On the other hand, 3, 4, and 5 
week old mice displayed increased tail biting/licking behaviors 
compared to the vehicle group. The 3 week old mice showed 
the highest duration of tail biting/licking behaviors (Fig. 3A).

The 3, 4, and 5 weeks old NMDA-injected mice also 
showed higher tail biting/licking frequency than the vehicle 
group, while the 6, 7, and 8 week old groups showed no sta-
tistical differences when compared with their matched vehicle 
groups after 3 h (Fig. 3B). The correlation between tail biting/
licking behavior and age was inversely proportional to each 
other (Fig. 3C, 3D), suggesting clear age-dependency of the 
observed nociceptive/repetitive behavior. As for frequency of 
wounded tails after 24 h, there were no injured mice in the 5, 
6, 7, and 8 week old groups treated with 50 mg/kg NMDA. 
However, 3 and 4 week old mice were wounded at proportions 
of 50% and 37.5%, respectively (Fig. 3E).

Effects of intraperitoneal NMDA injection on nociceptive 
behaviors

The hot plate test was performed to evaluate possible hy-

persensitivity to heat after NMDA injection by measuring the 
latency to lick the paws and to jump from the hot surface. As 
a result, the latency of paw licking was decreased in the 75 
mg/kg NMDA-exposed mice but not in the 50 mg/kg group 
(Fig. 4A). Further, mice injected with NMDA exhibited a lower 
latency of jumping than the vehicle group (Fig. 4B).

As another measure of hyperalgesia or hypersensitivity 
effects of NMDA in nociceptive conditions, the writhing test 
was performed by counting the number of writhing behav-
iors (stretching, extension of hind legs, and contraction of the 
abdomen) recorded after acetic acid injection. Writhing fre-
quency and number were increased by 0.6% and 0.7% acetic 
acid administration. However, prior systemic treatment with 
NMDA at either 50 or 75 mg/kg concentrations did not further 
increase acetic acid-induced writhing (Fig. 5A, 5B). Altogether, 
these results suggest that systemic administration of NMDA 
increased global nociceptive reactivity rather than modify-
ing simple pain reflexes responding to peripheral nociceptive 
stimuli.

Absence of extensive BBB breakdown and excitotoxicity 
after systemic NMDA administration

Systemic treatment with 50 mg/kg NMDA resulted in in-
creased NMDA concentrations in the cerebrospinal fluid 
(CSF), rising from less than limit of quantification (LLOQ, 
0.977 ng/ml) to 31.5 ± 28.1 ng/ml. However, we observed only 
a nonsignificant trend towards an increase in the tissue levels 
of NMDA in spinal cord, thalamus, and prefrontal cortex ho-
mogenates from treated animals. Thus, penetration of NMDA 
into the CNS appears to be moderate (Table 1).

To unequivocally determine whether the observed stereo-
typic behaviors were accompanied by excitotoxicity and BBB 
breakdown, we performed Evans Blue BBB penetration analy-
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sis, and immunohistochemical assessments of BBB and neu-
ronal integrity of thalamus and prefrontal cortex in vehicle or 
NMDA-exposed mice 1 h after NMDA injection. Although the 
positive control (stereotaxic surgical injury) showed a clear in-
crease in Evans Blue penetration in the brain, the NMDA treat-
ed groups did not show a significant increase in Evans Blue 
penetration across all age groups examined in this study (4, 
6 and 8 weeks), suggesting that extensive breakdown of the 
BBB was not elicited by our experimental conditions (Fig. 6). 
Similarly, immunohistochemical staining of NeuN, ZO-1, and 
peripheral IgG showed no differences between the NMDA-
treated and the vehicle-treated groups, suggesting absence of 
both substantial BBB breakdown and excitotoxic cell death in 
the brain (Fig. 7A, 7B).

DISCUSSION

In this study, we identified behavioral effects of intraperi-
toneal NMDA administration on stereotypic nociceptive and 
repetitive behaviors. Most strikingly, we observed that intra-
peritoneal NMDA administration increased tail biting/licking 
behaviors along with general grooming. These effects were 
dosage-dependent and juvenile mice showed the strongest 
responses. Similar to our results, in experiments using post-
natal 12 and 18 days rats, NMDA syndrome was shown to 
involve several age-dependent specific behaviors such as 
tail-twisting automatisms and seizures, and in postnatal 60 
day-old rats, NMDA induced significantly fewer tail-twisting 
automatisms than in young rats (Kabova et al., 1999). 

Most studies involving systemic administration of NMDA 
focus on its excitotoxic and convulsant effects at high concen-
trations. In contrast, Giménez-Llort et al. (1995) administered 
relatively low concentration of NMDA to adult Wistar rats and 
found that NMDA produced an acute short-lasting depressant 
effect on movement and rearing followed over the next 2 days 
by a long-lasting increase in fast moving exploratory activity, 
which was only significant during the dark period (Gimenez-
Llort et al., 1995). In the present study, we found that systemic 
administration of NMDA induced stereotypic nociceptive/re-
petitive behaviors only in juvenile mice without inducing sei-
zure-like behavior or massive damage to the BBB and brain. 
Whether the same or lower concentrations of NMDA (50 mg/
kg or less) modulates other psychiatric behaviors in juvenile 
rodents should be investigated further in future studies.

In general, the blood brain barrier in adult animals makes 
it difficult for NMDA to penetrate the central nervous system. 
However, several studies have shown that immature rodents 
are particularly sensitive to systemic injection of excitatory 
amino acids (Chung et al., 2000). Schoepp and colleagues 
reported that NMDA administered systemically to immature 
rats led to motor convulsions that were reduced by pretreat-
ment with DL-2-amino-5-phophonovaleric acid or (±)-3-(2-car-
boxypiperazin-4-yl)propyl-1-phosphonic acid, a competitive 
antagonist of NMDA receptors (Schoepp et al., 1990). Brace 
and colleagues have shown that both NMDA and kainite not 
only damage neurons and myelin, but also impair the integ-
rity of the blood-brain barrier (Brace et al., 1997). These find-
ings suggest that although penetration is strongly limited by 
the blood-brain barrier system, NMDA injected systemically 
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Fig. 5. Exposure to NMDA by dose did not affect writhing frequency in the writhing test. Pain responsiveness was measured using the 
writhing test. (A) The number of writhing behaviors elicited by 0.6% acetic acid. (B) The number of writhing behaviors elicited by 0.7% acetic 
acid. All data are expressed as the mean ± SEM. The number of animals per condition is as follows: S+S group when using 0.6% acetic 
acid (n=8), S+0.6A group (n=8), N50+0.6A group (n=8), N75+0.6A group (n=8), S+S group when using 0.7% acetic acid (n=9), S+0.7A 
group (n=11), N50+0.7A group (n=14), N75+0.7A group (n=14). **p<0.01, ***p<0.001 vs. S+S group. S+S group=mice injected with saline 
two times, S+A group=mice injected with 0.6 or 0.7% acetic acid after injection of saline, N50+A group=mice injected with 0.6 or 0.7% acetic 
acid after injection of NMDA at 50 mg/kg, N75+A group=mice injected with 0.6 or 0.7% acetic acid after injection of NMDA at 75 mg/kg.
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acts directly on particular receptors located in the brain after 
penetration through the blood-brain barrier in young rodents 
(Chung et al., 2000).

In the present study, we found significantly elevated levels 
of NMDA in CSF, while no significant alterations in tissue level 
of NMDA were demonstrated in thalamus and prefrontal cor-
tex. Similarly, we did not observe significant Evans Blue pen-
etration or IgG, NeuN, and ZO-1 immunoreactivity changes in 
the brain. Altogether, these results suggest that systemically 
administered NMDA in juvenile mice penetrated into brain and 
spinal cords at levels insufficient to change BBB integrity and 
excitotoxic damage to brain tissue. Therefore, our method may 
be beneficial for examining the behavioral effects of NMDA re-
ceptor activation, separate from the extensive damage higher 
doses cause across the nervous system.

Several studies have reported that intrathecal (i.t.) injec-
tion of NMDA or non-NMDA receptor agonists produce be-

havioral responses including hindlimb scratching, and biting 
and/or licking of the hind paw and the tail (Urca and Raig-
orodsky, 1988; Mjellem et al., 1993; Brambilla et al., 1996; 
Brace et al., 1997). These behaviors resemble those induced 
by neurokinin-1 (NK-1) receptor agonists such as substance 
P (Hylden and Wilcox, 1981, 1983; Sakurada et al., 1989, 
1994a, 1994b). In addition, i.t. administration of spermine, an 
endogenous polyamine, induced nociceptive behavior mainly 
consisting of biting and/or licking of the hind paw along with 
a slight increase in hindlimb scratching in mice. The effect of 
spermine is mediated through the polyamine recognition site 
on the NMDA receptor ion-channel complex (Tan-No et al., 
2000). Further, it has been found that different classes of glu-
tamate receptor antagonists including MK801 and memantine 
cause antinociception in animal models (Cahusac et al., 1984; 
Murray et al., 1991; Kristensen et al., 1994), as well as tonic 
pain (Dickenson and Sullivan, 1990; Dickenson and Aydar, 
1991; Yamamoto and Yaksh, 1992; Brace et al., 1997). Con-
sidering the similarity of central sensitization in pain and itch 
pathways and the effectiveness of NMDA receptor antagonists 
on the inhibition of itch (Jinks and Carstens, 1998; Tan-No et 
al., 2000), the stereotypic behavior observed in this study 
might represent augmented and/or compulsive neuropathic 
itch responses. In any case, the stereotypic nociceptive/repet-
itive behaviors induced by systemic administration of NMDA in 
juvenile mice, may help to understand the mechanism under-
lying repetitive behaviors such as stereotypies, compulsions, 
obsessions, and self-injurious actions in human and animal 
models of neurodevelopmental and neuropsychiatric disor-
ders (Kim et al., 2016).

At present, it is unclear how intraperitoneal injection of 
NMDA modulates complex nociceptive/repetitive behaviors. 
Considering the limited penetration of NMDA into CNS and 
CSF, intrathecal sensitization effects of NMDA and the exis-
tence of peripheral NMDA receptors participating in nocicep-
tive response (Raigorodsky and Urca, 1990; Schoepp et al., 
1990; McRoberts et al., 2001; Cairns et al., 2003), it is a rea-
sonable assumption that the observed behavioral response 
against NMDA in juvenile mice may be modulated by both 
CNS and peripheral mechanisms. In any case, it is important 
to note that in several neuropsychiatric disorders, such as 
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Table 1. The effects of intraperitoneal NMDA administration on the endogenous NMDA levels in CNS tissue of experimental mice

Weight (mg)
Vehicle group

Mean ± SEM
#1 #2 #3

Spinal cord 635.8 21.4 32.7 22.2 25.4 ± 3.6 (ng/g)
Prefrontal cortex 257.3 4.8 3.6 7.4 5.3 ± 1.1 (ng/g)
Thalamus 1,742.8 12.8 11.6 7.0 10.5 ± 1.8 (ng/g)
Cerebrospinal fluid <LLOQ <LLOQ <LLOQ

Weight (mg)
NMDA group

Mean ± SEM
#1 #2 #3

Spinal cord 630.8 30.2 18.8 26.7 25.2 ± 3.4 (ng/g)
Prefrontal cortex 831.7 15.9 4.4 4.7 8.3 ± 3.8 (ng/g)
Thalamus 2,627.8 26.9 10.3 10.1 15.8 ± 5.7 (ng/g)
Cerebrospinal fluid - 16.7 63.9 13.8 31.5 ± 16.2 (ng/ml)

Endogenous NMDA levels were measured (ng/g) using LC-MS/MS. The number of animals per condition was n=3 for each. Vehicle 
group=saline-injected mice, NMDA group=NMDA-exposed mice at 50 mg/kg group.

Veh NMDA 50 mg/kg
Positive control

(stereotaxic surgery)

4 weeks

6 weeks

8 weeks

Fig. 6. Intraperitoneal NMDA injection did not induce substantial 
BBB breakdown. BBB permeability was assessed using Evans 
blue assay. The number of animals per condition was follows: Vehi-
cle group (n=3), NMDA 50 mg/kg group (n=3). Veh=Saline-injected 
mice (Vehicle group), NMDA 50 mg/kg=NMDA-exposed mice at 50 
mg/kg group.
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schizophrenia and autism spectrum disorder. In these con-
texts, there is presumed to be an imbalance in glutamatergic 
neurotransmission which is especially prominent in NMDA 
signaling pathways. A prevailing hypothesis is these glutama-
tergic neurotransmission imbalances underlie altered sensory 
gaiting, nociceptive responses, and repetitive behaviors. The 
nociceptive and repetitive behavior changes in this experi-
ment therefore support this model of sensory-motor dysregu-
lation and may help to understand and devise strategies to 
control particular behavioral features of relevant neuropsychi-
atric disorders.

This study demonstrated that intraperitoneal NMDA ad-
ministration increased self-grooming and nociceptive and 
repetitive behaviors, especially tail biting/licking behaviors, in 
juvenile mice. The effects were age- and dose-dependent and 
were unaccompanied by massive BBB breakdown and exci-
totoxic damage to neural tissue. While the results from the 
present study may add additional support for the widely ac-
cepted E/I imbalance hypothesis of neuropsychiatric disorders 
and demonstrate mechanistic usefulness of our approach as a 
model, careful characterizations by in depth behavioral profil-
ing as well as investigation of the detailed molecular mecha-
nism underlying the observed phenomena should be carried 
out going forward. In addition, a rigorous delineation of the 
human relevance of the observed behavioral manifestations 
is warranted. 
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