Fig. 1. Related Work: Screenshots
Fig. 2. Architecture of the proposed system
Fig. 3. Data augmentation
Fig. 5. Training
Fig. 4. Data labeling
Fig. 6. Early stopping point
Fig. 8. Detection Result
Fig. 7. Upload screenshot
Table 1. Related Work
Table 2. Parameters and results
Table 3. Data set
References
- AWS(AmazonWebService) "https://aws.amazon.com/?nc2=h_lg"
- Naver about protest "https://terms.naver.com/entry.nhn?docId=1820712&cid=46634&categoryId=46634"
- ChosunIlbo, ratio of demonstration "http://news.chosun.com/site/data/html_dir/2018/11/03/2018110300250.html"
- Navernews research about drone "http://www.sportsseoul.com/news/read/617479"
- CatChaser(2016)ByRobertBond Nvidia "https://devblogs.nvidia.com/ai-cat-chaser-jetson-tx1-caffe"
- SINGH, Amarjot; PATIL, Devendra; OMKAR, S. N. Eye in the Sky: Real-time Drone Surveillance System (DSS) for Violent Individuals Identification using ScatterNet Hybrid Deep Learning Network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, p. 1629-1637, June 2018
- How To Do Real Time Object Detection OnDroneVideoStreams "https://blog.nanonets.com/real-time-object-detection-for-drones/?utm_source=facebook&utm_medium=social&utm_campaign=drone&utm_content=group_DeepLearnng&fbclid=IwAR34ULqditi4eM3Gvm-Ic84lM6LDA9ElQR6bmFaIsqRRJ1_hgauCgMTa-v8"
- REDMON, Joseph; FARHADI, Ali. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, April 2018.
- AWS Amazon Simple Storage Service "https://aws.amazon.com/s3/?nc2=type_a"
- ZHANG, Jianming, et al. A real-time chinese traffic sign detection algorithm based on modified YOLOv2. Algorithms, Vol. 10 Issue 4, p127. 13p, Dec2017.
- GoogleAPI "https://support.google.com/webmasters/answer/1061943?hl=ko"
- Google crawling using selenium "https://www.slideshare.net/winglessagl/seleniu-61525457"
- Image capture FFmpeg "https://www.ffmpeg.org/"
- Thumos Challenge2015 "http://www.thumos.info/download.html"
- Large Scale Visual Recognition Challenge 2014"http://www.image-net.org/challenges/LSVRC/2014/"
- SZEGEDY, Christian, et al. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. CVPR , p. 1-9, June 2015.
- Labeling Yolo_mark "https://github.com/AlexeyAB/Yolo_mark"
- REDMON, Joseph; FARHADI, Ali. YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition. CVPR, p. 7263-7271, July 2017.
- Lin, Tsung-Yi, et al. "Feature pyramid networks for object detection." CVPR. Vol. 1. No. 2. July 2017.
- Tistory Blog yeonsu "http://yeonsuuu-uuu.tistory.com/"
- Live streaming RTMP Server "http://blog.manycam.com/rtmp-live-stream/#.XATy5hMzbcM"