DOI QR코드

DOI QR Code

Flocculating Activity and Dehydration Efficiency of Biopolymer Flocculant Biopol32 in Industrial Wastewater Treatment

생물고분자응집제 Biopol32의 산업폐수에 대한 응집활성 및 탈수효과

  • Lee, Myoung Eun (Department of Environmental Engineering, Gyeongnam National University of Science and Technology) ;
  • Oh, Nara (R&D Center, Diagen Inc.) ;
  • Suh, Hyun-Hyo (Department of Environmental Engineering, Gyeongnam National University of Science and Technology)
  • 이명은 (국립경남과학기술대학교 환경공학과) ;
  • 오나라 (주식회사 디아젠 기술연구소) ;
  • 서현효 (국립경남과학기술대학교 환경공학과)
  • Received : 2019.01.31
  • Accepted : 2019.04.19
  • Published : 2019.03.30

Abstract

For the practical application and development of biopolymer flocculant Biopol32 produced by Pseudomonas sp. GP32, its flocculation effect on wastewater from food processing, slaughter houses, and the dyeing industry was investigated. In the food processing wastewater, Biopol32 led to a chemical oxygen demand (COD) reduction rate of 70% and a suspended solid (SS) removal rate of 49% at pH 6.0. In the slaughter house wastewater at pH 4.0, a COD reduction rate of 61% and SS removal rate of 91% were observed, and in the dyeing wastewater, the rates were 72% and 92%, respectively, at pH 5.0. The size of floc formed during the flocculation process was 10 mm at a final concentration of 20 ppm, and the dehydration efficiency was 62%. In both the bioflocculant Biopol32 group and a PAA synthetic flocculant group, optimal flocculant concentration that yielded the best overall dehydration efficiency was 20 ppm, and, at this concentration, the shortest filtration time to reach the natural critical moisture content of 78.1% was attained.

Pseudomonas sp. GP32가 생산하는 생물고분자 응집제 Biopol32의 실제 응용, 개발을 위하여 식품폐수, 도축폐수, 염색폐수에 대하여 응집효과를 검토하였다. 식품폐수의 경우 pH 6.0에서 70%의 화학적산소요구량(COD) 감소율과 49%의 부유고형물(SS) 제거율을 나타내었다. 도축폐수에서는 pH 4.0에서 61%의 화학적산소요구량 감소율과 91%의 부유고형물 제거율을 보였으며, 염색페수의 경우 pH 5.0에서 72%의 화학적산소요구량 감소율과 92%의 부유고형물 제거율을 보였다. 응집과정에서 형성되는 floc의 크기는 Biopol32 용액을 최종농도 20 ppm으로 첨가하였을 때 10 mm였고 이때 탈수효율은 62%였다. 생물응집제 Biopol32 첨가구와 합성응집제 PAA 첨가구에서 탈수효율이 전반적으로 가장 좋은 응집제 첨가 농도는 20 ppm으로 나타났으며, 또한 이때 자연한계함수율(78.1%)에 이르는 최단의 여과시간을 얻을 수가 있었다.

Keywords

SMGHBM_2019_v29n3_362_f0001.png 이미지

Fig. 1. Schematic diagram of ultrafiltration cell.

SMGHBM_2019_v29n3_362_f0002.png 이미지

Fig. 2. Effect of pH of Biopol32 on the treatment of wastewaters.

SMGHBM_2019_v29n3_362_f0003.png 이미지

Fig. 3. Changes in floc size as a function of flocculant concentration.

SMGHBM_2019_v29n3_362_f0004.png 이미지

Fig. 4. Changes in water content at different contentration of Biopol32 in sludge on filtration.

Table 1. Comparision of flocculation activity on the treatment of industrial wastewaters between Biopol32 and PAA

SMGHBM_2019_v29n3_362_t0001.png 이미지

References

  1. Baugh, W. A. 1975. Coagulation with chitosan. Poutry Sci. 54, 1904-1912. https://doi.org/10.3382/ps.0541904
  2. Bikales, N. M. 1973. Polymer Science and Technology. Vol 2, Water Soluble Polymer. pp.424. New York, Plenum Press.
  3. Fridman, B. A. and Dugan, P. R. 1968. Identification of Zoogloea sp. and the relationship to Zoogloeal matrix and floc formation. J. Bacteial. 95, 1903-1909. https://doi.org/10.1128/JB.95.5.1903-1909.1968
  4. Gutcho, S. 1977. Waste treatment with polyectrolytes and other flocculants, pp1-37. Noyes Data Corp., Park Ridge, New Jersey.
  5. Hirano, S., Kondo, S. and Ohe, Y. 1975. Chitosan gel. Polymer 16, 622-627. https://doi.org/10.1016/0032-3861(75)90159-7
  6. Kang, S. M. 1990. Dehydration of activated sludge by filter press. Ph. D. Dissertation. Osaka University, Osaka, Japan.
  7. Koizumi, J., Takeda, M., Kurane, R. and Nakamura, I. 1991. Synergetic flocculation of the bioflocculant extracellularly produced by Norcardia amarae. J. Gen. Appl. Microbiol. 37, 447-454. https://doi.org/10.2323/jgam.37.447
  8. Kurane, R., Takeda, K. and Suzuki, T. 1986. Screening for and characteristics of microbial flocculants. Agric. Biol. Chem. 50, 2301-2307. https://doi.org/10.1271/bbb1961.50.2301
  9. Kurane, R., Toeda, K. Takedak, K. and Suzuki, T. 1986. Culture conditions for production of microbial flocculant by Rhodococcus erythropholis. Agric. Biol. Chem. 50, 2309-2313. https://doi.org/10.1271/bbb1961.50.2309
  10. Lee, M. E., Lee, H. D. and Suh, H. H. 2015. Production and characterization of extracellular polysaccharide produced by Pseudomonas sp. GP32. J. Life Sci. 25, 1027-1035. https://doi.org/10.5352/JLS.2015.25.9.1027
  11. Nakamura, J., Miyahiro, S. and Hirose, Y. 1976. Conditions for production of microbial cell flocculant by Aspergillus sojae AJ7002. Agric. Biol. Chem. 40, 1341-1347. https://doi.org/10.1271/bbb1961.40.1341
  12. Nakamura, J., Miyahiro, S. and Hirose, Y. 1976. Screening, isolation and some properties of microbial cell flocculants. Agric. Biol. Chem. 40, 377-383. https://doi.org/10.1080/00021369.1976.10862059
  13. Takagi, H. and Kadowaki, K. 1985. Flocculant production by Pacilomyces sp. taxonomic studies and culture conditions for production. Agric. Biol. Chem. 49, 3151-3157. https://doi.org/10.1080/00021369.1985.10867249
  14. Takagi, H. and Kadowaki, K. 1985. Purification and chemical properties of a flocculant produced by Pacilomyces sp. Agric. Biol. Chem. 49, 3159-3164. https://doi.org/10.1080/00021369.1985.10867250
  15. Toeda, K. and Kurane, R. 1991, Microbial flocculant from Alcaligenes cupidus KT201. Agric. Biol. Chem. 55, 2793-2799. https://doi.org/10.1080/00021369.1991.10857749
  16. Vanhoric, M. and Moens, W. 1983. Cacinogen of acrylamide. Carcinogensis 4, 1459. https://doi.org/10.1093/carcin/4.11.1459
  17. Vincent, B., Bijsterbosch, B. H. and Lyklema, J. 1971. Competitive adsorption of ions and neutral molecules in the stern layer on silver iodide and its effect on colloid stability. J. Colloid Interface Sci. 37, 171-176. https://doi.org/10.1016/0021-9797(71)90277-3
  18. Whistler, R. L. 1973. Algin, in Industrial Gums. pp 49-81. William H. M. and Pettitt, D. J. (eds.), Academic Press, New York, U.S.A.
  19. Whistler, R. L. 1973. Furcellaran, in Industrial Gums. pp 123-136. Petersen, E. B., Christensen, J. and Hemmingsen, P. (eds.), Academic Press, New York, U.S.A.
  20. Whistler, R. L. 1973. Chitin, in Industrial Gums. pp. 465-468 Whistler, R. L.(ed.), Academic Press, New York, U.S.A.
  21. Zajic, J. E. and Knettig, E. 1970. Flocculants from paraffinic hydrocarbons developments in industrial microbiology, pp. 87-98. American Institute of Biological Science, Washington DC.
  22. Zaic, J. E. and Leduy, A. 1973. Flocculant and chemical properties of a polysaccharide from Pullularia Pullulans. Appl. Microbiol. 25, 628-635. https://doi.org/10.1128/AEM.25.4.628-635.1973