DOI QR코드

DOI QR Code

Effect of MnO2 and CuO Addition on Microstructure and Piezoelectric Properties of 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04BaZrO3 Ceramics

  • Cho, Kyung-Hoon (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • Received : 2019.02.12
  • Accepted : 2019.02.20
  • Published : 2019.03.27

Abstract

This study investigates the effect of MnO2 and CuO as acceptor additives on the microstructure and piezoelectric properties of $0.96(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}Nb_{0.93}Sb_{0.07}O_3-0.04BaZrO_3$, which has a rhombohedral-tetragonal phase boundary composition. $MnO_2$ and CuO-added $0.96(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}Nb_{0.93}Sb_{0.07}O_3-0.04BaZrO_3$ ceramics sintered at a relatively low temperature of $1020^{\circ}C$ show a pure perovskite phase with no secondary phase. As the addition of $MnO_2$ and CuO increases, the sintered density and grain size of the resulting ceramics increases. Due to the difference in the amount of oxygen vacancies produced by B-site substitution, Cu ion doping is more effective for uniform grain growth than Mn ion doping. The formation of oxygen vacancies due to B-site substitution of Cu or Mn ions results in a hardening effect via ferroelectric domain pinning, leading to a reduction in the piezoelectric charge coefficient and improvement of the mechanical quality factor. For the same amount of additive, the addition of CuO is more advantageous for obtaining a high mechanical quality factor than the addition of $MnO_2$.

Keywords

References

  1. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  2. M. Kosec, B. Malic, A. Bencan and T. Rojac, KNN-based piezoceramics: In Piezoelectric and Acoustic Materials of Transducer Applications, A. Safari and E. K. Akdogan Eds., Springer Science and Business Media LLC, New York (2008).
  3. J. Rodel, A. B. N. Kounga, M. Weissenberger-Eibl, D. Koch, A. Bierwisch, W. Rossner, M. J. Hoffmann, R. Danzer and G. Schneider, J. Eur. Ceram. Soc., 29, 1549 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.10.015
  4. J. Rodel, W. Jo, K. Seifert, E. M. Anton, T. Granzow and D. Damjanovic, J. Am. Ceram. Soc., 89, 1153 (2009). https://doi.org/10.1111/j.1551-2916.2005.00894.x
  5. T. R. Shrout and S. Zhang, J. Electroceram., 19, 111 (2007).
  6. D. Damjanovic, N. Klein, J. Li and V. Porokhonskyy, Funct. Mater. Lett., 3, 5 (2010). https://doi.org/10.1142/S1793604710000919
  7. H. Y. Park, K. H. Cho, D. S. Paik, S. Nahm, H. G. Lee and D. H. Kim, J. Appl. Phys., 102, 124101 (2007). https://doi.org/10.1063/1.2822334
  8. H. C. Song, K. H. Cho, H. Y. Park, C. W. Ahn, S. Nahm, K. Uchino and S. H. Park, J. Am. Ceram. Soc., 90, 1812 (2007). https://doi.org/10.1111/j.1551-2916.2007.01698.x
  9. X. J. Cheng, J. G. Wu, X. P. Wang, D. Q. Xiao and J. G. Zhu, Appl. Phys. Lett., 103, 052906 (2013). https://doi.org/10.1063/1.4817517
  10. T. Zheng, J. Wu, D. Xiao, J. Zhu, X. Wang and X. Lou, J. Mater. Chem. A, 3, 1868 (2015). https://doi.org/10.1039/C4TA05423G
  11. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  12. S. Zhang, R. Xia and T. R. Shrout, J. Electroceram., 19, 251 (2007). https://doi.org/10.1007/s10832-007-9056-z
  13. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou and X. Wang, J. Am. Chem. Soc., 136, 2905 (2014). https://doi.org/10.1021/ja500076h
  14. M. H. Zhang, H. C. Thong, Y. X. Lu, W. Sun, J.-F. Li and K. Wang, J. Korean Ceram. Soc., 54, 261 (2017). https://doi.org/10.4191/kcers.2017.54.4.10
  15. K. Wang, J. F. Li and N. Liu, Appl. Phys. Lett., 93, 092904 (2008). https://doi.org/10.1063/1.2977551
  16. J. Wu, Y. Wang, D. Xiao, J. Zhu, P. Yu, L. Wu and W. Wu, Jpn. J. Appl. Phys., 46, 7375 (2007). https://doi.org/10.1143/JJAP.46.7375
  17. Y. F. Chang, Z. Yang, D. Ma, Z. Liu and Z. Wang, J. Appl. Phys., 104, 024109 (2008). https://doi.org/10.1063/1.2957591
  18. J. H. Yoo and G. M. Lee, Trans. Electr. Electron. Mater., 19, 375 (2018). https://doi.org/10.1007/s42341-018-0050-8
  19. X. Cheng, J. Wu, X. Lou, X. Wang, X. Wang, D. Xiao and J. Zhu, ACS Appl. Mater. Interfaces, 6, 750 (2014). https://doi.org/10.1021/am404793e
  20. T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao and J. Zhu, Dalton Trans., 43, 9419 (2014). https://doi.org/10.1039/c4dt00768a
  21. B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang and X. Lou, ACS Appl. Mater. Interfaces, 5, 7718 (2013). https://doi.org/10.1021/am402548x
  22. J. Wu, J. Xiao, T. Zheng, X. Wang, X. Cheng, B. Zhang, D. Xiao and J. Zhu, Scr. Mater., 88, 41 (2014). https://doi.org/10.1016/j.scriptamat.2014.06.001
  23. F. Shenouda and S. Aziz, J. Appl. Chem., 17, 258 (1967). https://doi.org/10.1002/jctb.5010170905
  24. K. H. Cho, C. S. Park and S. Priya, Appl. Phys. Lett., 97, 182902 (2010). https://doi.org/10.1063/1.3511285