DOI QR코드

DOI QR Code

Flexible Dye-sensitized Solar Cell Using Titanium Gel at Low Temperature

저온 티타늄 겔을 이용한 플렉시블 염료감응형 태양전지

  • Ji, Seung Hwan (Department of Energy Engineering, Dankook University) ;
  • Park, Hyunsu (Department of Energy Engineering, Dankook University) ;
  • Kim, Doyeon (Department of Energy Engineering, Dankook University) ;
  • Han, Do Hyung (Department of Energy Engineering, Dankook University) ;
  • Yun, Hye Won (Department of Energy Engineering, Dankook University) ;
  • Kim, Woo-Byoung (Department of Energy Engineering, Dankook University)
  • 지승환 (단국대학교 에너지공학과) ;
  • 박현수 (단국대학교 에너지공학과) ;
  • 김도연 (단국대학교 에너지공학과) ;
  • 한도형 (단국대학교 에너지공학과) ;
  • 윤혜원 (단국대학교 에너지공학과) ;
  • 김우병 (단국대학교 에너지공학과)
  • Received : 2018.12.06
  • Accepted : 2019.01.18
  • Published : 2019.03.27

Abstract

Flexible dye-sensitized solar cells using binder free $TiO_2$ paste for low temperature sintering are developed. In this paste a small amount of titanium gel is added to a paste of $TiO_2$ nanoparticle. Analysis of titanium gel paste prepared at $150^{\circ}C$ shows that it has a pure anatase phase in XRD and mesoporous structure in SEM. The formation of the titanium gel 1-2 nm coated layer is confirmed by comparing the TEM image analysis of the titanium gel paste and the pristine paste. This coating layer improves the excited electron transfer and electrical contact between particles. The J-V curves of the organic binder DSSCs fabricated at $150^{\circ}C$ shows a current density of $0.12mA/cm^2$ and an open-circuit voltage of 0.47 V, while the titanium gel DSSCs improves electrical characteristics to $5.04mA/cm^2$ and 0.74 V. As a result, the photoelectric conversion efficiency of the organic binder DSSC prepared at low temperature is as low as 0.02 %, but the titanium gel paste DSSCs has a measured effciency of 2.76 %.

Keywords

References

  1. J. Gong, J. Liang and K. Sumathy, Renewable and Sustainable Energy Rev., 16, 5848 (2012). https://doi.org/10.1016/j.rser.2012.04.044
  2. H. L. An, H.-R. Kang, H. J. Sun, J. H. Han and H.-J. Ahn, Korean J. Mater. Res., 25, 672 (2015). https://doi.org/10.3740/MRSK.2015.25.12.672
  3. B. O'regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  4. J.-W. Bae, B.-R. Koo, T.-K. Lee and H.-J. An, J. Korean Powder Metall. Inst., 25, 1 (2018). https://doi.org/10.4150/KPMI.2018.25.1.1
  5. K. Fan, R. Li, J. Chen, W. Shi and T. Peng, Sci. Adv. Mater., 5, 1596 (2013). https://doi.org/10.1166/sam.2013.1615
  6. L. Y. Lin, C. P. Lee, K. W. Tsai, M. H. Yeh, C. Y. Chen, R. Vittal, C. G. Wu and K. C. Ho, Prog. Photovoltaics: Res. Appl., 20, 181 (2012). https://doi.org/10.1002/pip.1116
  7. M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang and K.-J. Kim, Sol. Energy Mater. Sol. Cells, 90, 574 (2006). https://doi.org/10.1016/j.solmat.2005.04.025
  8. T. Miyasaka and Y. Kijitori, J. Electrochem. Soc., 151, A1767 (2004). https://doi.org/10.1149/1.1796931
  9. F. Pichot, J. R. Pitts and B. A. Gregg, Langmuir, 16, 5626 (2000). https://doi.org/10.1021/la000095i
  10. C. Longo, J. Freitas and M.-A. De Paoli, J. Photochem. Photobiol., A, 159, 33 (2003). https://doi.org/10.1016/S1010-6030(03)00106-0
  11. T. Kado, Y. Kubota and S. Hayase, Chem. Lett., 34, 1006 (2005). https://doi.org/10.1246/cl.2005.1006
  12. S. A. Haque, E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmes and J. R. Durrant, Chem. Commun., 24, 3008 (2003).
  13. T. Kado, M. Yamaguchi, Y. Yamada and S. Hayase, Chem. Lett., 32, 1056 (2003). https://doi.org/10.1246/cl.2003.1056
  14. L.-Y. Lin, C.-P. Lee, R. Vittal and K.-C. Ho, J. Power Sources, 195, 4344 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.031
  15. D. Zhang, T. Yoshida, T. Oekermann, K. Furuta and H. Minoura, Adv. Funct. Mater., 16, 1228 (2006). https://doi.org/10.1002/adfm.200500700
  16. X. Li, H. Lin, J. Li, N. Wang, C. Lin and L. Zhang, Photochem. Photobiol., A, 195, 247 (2008). https://doi.org/10.1016/j.jphotochem.2007.10.010
  17. M. Iwasaki, C.-W. Lee, T.-H. Kim and W.-K. Park, J. Ceram. Soc. Jpn., 116, 153 (2008). https://doi.org/10.2109/jcersj2.116.153
  18. S. Uchida, M. Tomiha, H. Takizawa and M. Kawaraya, Photochem. Photobiol., A, 164, 93 (2004). https://doi.org/10.1016/j.jphotochem.2004.01.026
  19. M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda and G. Nelles, Nat. Mater., 4, 607 (2005). https://doi.org/10.1038/nmat1433
  20. D. Zhang, T. Yoshida and H. Minoura, Chem. Lett., 31, 874 (2002). https://doi.org/10.1246/cl.2002.874
  21. J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem., 18, 259 (1988). https://doi.org/10.1016/0079-6786(88)90005-2
  22. H. Park, J. Choi, J.-P. Choi and W.-B. Kim, Photochem. Photobiol., A, 351, 139 (2018). https://doi.org/10.1016/j.jphotochem.2017.10.019
  23. N.-G. Park, J. Van de Lagemaat and A.J. Frank, J. Phys. Chem. B, 104, 8989 (2000). https://doi.org/10.1021/jp994365l