DOI QR코드

DOI QR Code

Fabrication and Photoelectrochemical Properties of an Oxide Photoanode with Zinc Oxide Nanorod Array Embedded in Cuprous Oxide Thin Film

산화아연 나노막대가 내장된 아산화구리 박막 구조를 이용한 산화물 광양극 제작 및 광전기화학적 특성

  • Min, Byeongguk (Graduate School of Advanced Circuit Substrate Engineering, Chungnam National University) ;
  • Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
  • 민병국 (충남대학교 차세대기판학과) ;
  • 김효진 (충남대학교 공과대학 신소재공학과)
  • Received : 2019.01.08
  • Accepted : 2019.02.27
  • Published : 2019.03.27

Abstract

We report on the fabrication and characterization of an oxide photoanode with a zinc oxide (ZnO) nanorod array embedded in cuprous oxide ($Cu_2O$) thin film, namely a $ZnO/Cu_2O$ oxide p-n heterostructure photoanode, for enhanced efficiency of visible light driven photoelectrochemical (PEC) water splitting. A vertically oriented n-type ZnO nanorod array is first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type $Cu_2O$ thin film is directly electrodeposited onto the vertically oriented ZnO nanorod array to form an oxide p-n heterostructure. The introduction of $Cu_2O$ layer produces a noticeable enhancement in the visible light absorption. From the observed PEC current density versus voltage (J-V) behavior under visible light illumination, the photoconversion efficiency of this $ZnO/Cu_2O$ p-n heterostructure photoanode is found to reach 0.39 %, which is seven times that of a pristine ZnO nanorod photoanode. In particular, a significant PEC performance is observed even at an applied bias of 0 V vs $Hg/Hg_2Cl_2$, which makes the device self-powered. The observed improvement in the PEC performance is attributed to some synergistic effect of the p-n bilayer heterostructure on the formation of a built-in potential including the light absorption and separation processes of photoinduced charge carriers, which provides a new avenue for preparing efficient photoanodes for PEC water splitting.

Keywords

References

  1. C.-J. Winter, Int. J. Hydrogen Energy, 34, S1 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.063
  2. B. C. H. Steele, Nature, 400, 619 (1999). https://doi.org/10.1038/23144
  3. P. V. Kamat, J. Phys. Chem. C, 111, 2834 (2007). https://doi.org/10.1021/jp066952u
  4. Y. Wei, L. Ke, J. Kong, H. Liu, Z. Jiao, X. Lu, H. Du and X. W. Sun, Nanotechnology, 23, 235401 (2012). https://doi.org/10.1088/0957-4484/23/23/235401
  5. A. Fujishima and K. Honda, Nature, 238, 37 (1972). https://doi.org/10.1038/238037a0
  6. X. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007). https://doi.org/10.1021/cr0500535
  7. Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhang, P. Lin, X. Zhang, H. Yuan, X. Zhang and Y. Zhang, Sci. Rep., 5, 7882 (2015). https://doi.org/10.1038/srep07882
  8. P. Lin, X. Chen, X. Yan, Z. Zhang, H. Yuan, P. Li, Y. Zhang and Y. Zhang, Nano Res., 7, 860 (2014). https://doi.org/10.1007/s12274-014-0447-6
  9. M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More and S. Ogale, J. Mater. Chem., 22, 17055 (2012). https://doi.org/10.1039/c2jm32660d
  10. T. Jiang, T. Xie, L. Chen, Z. Fu and D. Wang, Nanoscale, 5, 2938 (2013). https://doi.org/10.1039/c3nr34219k
  11. S. T. Ren, G. H. Fan, M. L. Liang, Q. Wang and G. L. Zhao, J. Appl. Phys., 115, 064301 (2014). https://doi.org/10.1063/1.4863468
  12. J. Park, H. Kim and D. Kim, Korean J. Mater. Res., 28, 214 (2018). https://doi.org/10.3740/MRSK.2018.28.4.214
  13. Z. Zhang and P. Wang, J. Mater. Chem., 22, 2456 (2012). https://doi.org/10.1039/C1JM14478B
  14. Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun and Y. Zhang, Nano Res., 8, 2891 (2015). https://doi.org/10.1007/s12274-015-0794-y
  15. S. J. A. Moniz, S. A. Shevin, D. J. Martin, Z.-X. Guo and J. Tang, Energy Environ. Sci., 8, 731 (2015). https://doi.org/10.1039/C4EE03271C
  16. D. Wang, X. Zhang, P. Sun, S. Lu, L. Wang, C. Wang and Y. Liu, Electrochimica Acta, 130, 290 (2014). https://doi.org/10.1016/j.electacta.2014.03.024
  17. S. Kim, H. Kim, S.-K. Hong and D. Kim, Korean J. Mater. Res., 26, 604 (2016). https://doi.org/10.3740/MRSK.2016.26.11.604
  18. L. Liu, K. Hong, T. Hu and M. Xu, J. Alloys Compd., 511, 195 (2012). https://doi.org/10.1016/j.jallcom.2011.09.028
  19. P. E. de Jongh, D. Vanmaekelbergh and J. J. Kelly, Chem. Mater., 11, 3512 (1999). https://doi.org/10.1021/cm991054e
  20. T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 43, 7520 (2014). https://doi.org/10.1039/C3CS60378D
  21. D. T. Sawyer, A. Sobkowiak and J. Roberts, Jr., 2nd ed., p. 196, Electrochemistry for Chemists, John Wiley & Sons, New York (1995).