DOI QR코드

DOI QR Code

고초균 아종 spizizenii의 α-acetolactate decarboxylase 결정 구조

Crystal structure of α-acetolactate decarboxylase from Bacillus subtilis subspecies spizizenii

  • 엄지영 (강원대학교 의생명과학대학 의생명융합학부) ;
  • 오한별 (강원대학교 의생명과학대학 의생명융합학부) ;
  • 윤성일 (강원대학교 의생명과학대학 의생명융합학부)
  • Eom, Jiyoung (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University) ;
  • Oh, Han Byeol (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University) ;
  • Yoon, Sung-il (Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University)
  • 투고 : 2019.01.07
  • 심사 : 2019.01.29
  • 발행 : 2019.03.31

초록

다양한 미생물은 세포와 주변의 과산화를 방지하고 여분의 에너지를 보관하기 위해 ${\alpha}$-acetolactate decarboxylase(ALDC)를 이용해 아세토인을 생성한다. 아세토인은 안전한 식품 향미 개선제이기 때문에 ALDC를 이용한 아세토인 생합성에 많은 산업체가 관심을 가지고 있다. ALDC는 ${\alpha}$-acetolactate의 탈카르복실화 반응을 통해 아세토인을 생산하는 금속 의존 효소이다. 본 논문에서는 고초균 아종 spizizenii의 ALDC(bssALDC) 결정구조를 $1.7{\AA}$ 해상도에서 보고한다. bssALDC는 두 개의 ${\beta}$-sheet가 중앙부를 형성하는 ${\alpha}/{\beta}$ 구조를 가진다. bssALDC는 중앙부의 소수성 상호작용과 주변부의 친수성 상호작용을 통해 이합체를 형성한다. bssALDC는 세 개의 histidine 잔기와 세 개의 물 분자를 이용해 아연 이온에 배위결합한다. 구조와 서열의 비교 분석에 기초하여 아연 이온과 이 주변부 bssALDC 잔기들이 bssALDC의 효소 활성부위임을 제안한다.

Acetoin is generated by numerous microorganisms using ${\alpha}$-acetolactate decarboxylase (ALDC) to prevent overacidification of cells and their environment and to store remaining energy. Because acetoin has been used as a safe flavor enhancer in food products, industries have been interested in biotechnological production of acetoin using ALDC. ALDC is a metal-dependent enzyme that produces acetoin from ${\alpha}$-acetolactate through decarboxylation reaction. Here, we report the crystal structure of ALDC from Bacillus subtilis subspecies spizizenii (bssALDC) at $1.7{\AA}$ resolution. bssALDC folds into a two-domain ${\alpha}/{\beta}$ structure where two ${\beta}$-sheets form a central core. bssALDC assembles into a dimer through central hydrophobic interactions and peripheral hydrophilic interactions. bssALDC coordinates a zinc ion using three histidine residues and three water molecules. Based on comparative analyses of ALDC structures and sequences, we propose that the active site of bssALDC includes the zinc ion and its neighboring bssALDC residues.

키워드

MSMHBQ_2019_v55n1_9_f0001.png 이미지

Fig. 1. SDS-PAGE analysis of purified bssALDC protein.

MSMHBQ_2019_v55n1_9_f0002.png 이미지

Fig. 2. Amino acid sequence alignment of bssALDC and its orthologs (bs168ALDC, bbALDC, and kpALDC).

MSMHBQ_2019_v55n1_9_f0003.png 이미지

Fig. 3. Overall structure of bssALDC monomer.

MSMHBQ_2019_v55n1_9_f0004.png 이미지

Fig. 4. bssALDC dimer and its dimerization interface.

MSMHBQ_2019_v55n1_9_f0005.png 이미지

Fig. 5. Dimerization interface of bssALDC and its sequence conservation.

MSMHBQ_2019_v55n1_9_f0006.png 이미지

Fig. 6. Zinc binding of bssALDC.

Table 1. Crystallographic statistics of the bssALDC structure

MSMHBQ_2019_v55n1_9_t0001.png 이미지

참고문헌

  1. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, and Ben-Tal N. 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344-350. https://doi.org/10.1093/nar/gkw408
  2. Bae SJ, Kim S, and Hahn JS. 2016. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Sci. Rep. 6, 27667. https://doi.org/10.1038/srep27667
  3. Bursac T, Gralnick JA, and Gescher J. 2017. Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnol. Bioeng. 114, 1283-1289. https://doi.org/10.1002/bit.26243
  4. Emsley P and Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
  5. Forster AH, Beblawy S, Golitsch F, and Gescher J. 2017. Electrode-assisted acetoin production in a metabolically engineered Escherichia coli strain. Biotechnol. Biofuels 10, 65. https://doi.org/10.1186/s13068-017-0745-9
  6. Grundy FJ, Waters DA, Takova TY, and Henkin TM. 1993. Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis. Mol. Microbiol. 10, 259-271. https://doi.org/10.1111/j.1365-2958.1993.tb01952.x
  7. Halpern YS and Umbarger HE. 1959. Evidence for two distinct enzyme systems forming acetolactate in Aerobacter aerogenes. J. Biol. Chem. 234, 3067-3071. https://doi.org/10.1016/S0021-9258(18)69622-X
  8. Ji F, Li M, Feng Y, Wu S, Wang T, Pu Z, Wang J, Yang Y, Xue S, and Bao Y. 2018. Structural and enzymatic characterization of acetolactate decarboxylase from Bacillus subtilis. Appl. Microbiol. Biotechnol. 102, 6479-6491. https://doi.org/10.1007/s00253-018-9049-7
  9. Jia X, Liu Y, and Han Y. 2017. A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate. Sci. Rep. 7, 4333. https://doi.org/10.1038/s41598-017-04684-8
  10. Levine M. 1916. On the significance of the voges-proskauer reaction. J. Bacteriol. 1, 153-164. https://doi.org/10.1128/JB.1.2.153-164.1916
  11. Loken JP and Stormer FC. 1970. Acetolactate decarboxylase from Aerobacter aerogenes: purification and properties. Eur. J. Biochem. 14, 133-137. https://doi.org/10.1111/j.1432-1033.1970.tb00270.x
  12. Marlow VA, Rea D, Najmudin S, Wills M, and Fulop V. 2013. Structure and mechanism of acetolactate decarboxylase. ACS Chem. Biol. 8, 2339-2344. https://doi.org/10.1021/cb400429h
  13. Murshudov GN, Vagin AA, and Dodson EJ. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240-255. https://doi.org/10.1107/S0907444996012255
  14. Otwinowski Z and Minor W. 1997. Processing X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  15. Park SC, Kwak YM, Song WS, Hong M, and Yoon SI. 2017. Structural basis of effector and operator recognition by the phenolic acid-responsive transcriptional regulator PadR. Nucleic Acids Res. 45, 13080-13093. https://doi.org/10.1093/nar/gkx1055
  16. Shen X, Liu D, Liu J, Wang Y, Xu J, Yang Z, Guo T, Niu H, and Ying H. 2016. Enhanced production of butanol and acetoin by heterologous expression of an acetolactate decarboxylase in Clostridium acetobutylicum. Bioresour. Technol. 216, 601-606. https://doi.org/10.1016/j.biortech.2016.05.121
  17. Tsau JL, Guffanti AA, and Montville TJ. 1992. Conversion of pyruvate to acetoin helps to maintain pH homeostasis in Lactobacillus plantarum. Appl. Environ. Microbiol. 58, 891-894. https://doi.org/10.1128/AEM.58.3.891-894.1992
  18. Wu W, Zhao Q, Che S, Jia H, Liang H, Zhang H, Liu R, Zhang Q, and Bartlam M. 2019. Structural characterization of an acetolactate decarboxylase from Klebsiella pneumoniae. Biochem. Biophys. Res. Commun. 509, 154-160. https://doi.org/10.1016/j.bbrc.2018.12.094
  19. Xiao Z and Lu JR. 2014. Generation of acetoin and its derivatives in foods. J. Agric. Food Chem. 62, 6487-6497. https://doi.org/10.1021/jf5013902
  20. Xiao Z, Ma C, Xu P, and Lu JR. 2009. Acetoin catabolism and acetylbutanediol formation by Bacillus pumilus in a chemically defined medium. PLoS One 4, e5627. https://doi.org/10.1371/journal.pone.0005627
  21. Xiao Z and Xu P. 2007. Acetoin metabolism in bacteria. Crit. Rev. Microbiol. 33, 127-140. https://doi.org/10.1080/10408410701364604