DOI QR코드

DOI QR Code

A High Radiation Efficiency and Narrow Beam Width of Optical Beam Steering Using a Silicon-based Grating Structure Integrated with Distributed Bragg Reflectors

분배 브래그 반사기가 집적된 실리콘 기반 격자 구조를 이용한 광학 빔 방사 효율 및 조향 선폭 성능 향상

  • Hong, Yoo-Seung (School of Electrical and Electronics Engineering, Hongik University) ;
  • Cho, Jun-Hyung (School of Electrical and Electronics Engineering, Hongik University) ;
  • Sung, Hyuk-Kee (School of Electrical and Electronics Engineering, Hongik University)
  • Received : 2019.02.26
  • Accepted : 2019.03.12
  • Published : 2019.03.31

Abstract

We first numerically analyzed the characteristics of a silicon-based grating structure for beam steering. The analysis includes the basic principle of the grating structure according to the wavelength, peak radiation angle, radiation efficiency, and full-width at the half maximum(FWHM) of the radiation angle. Based on the analysis, we propose a silicon-based grating structure integrated with distributed Bragg reflector(DBR) to obtain a high radiation efficiency and narrow beam width simultaneously. We performed the numerical optimization of the radiation efficiency and FWHM of the radiation angle according to the DBR position. By the design optimization using the proposed grating structure compatible with the complementary metal-oxide semiconductor(CMOS) process, we achieved a maximum radiation efficiency of 87.1% and minimum FWHM of radiation angle of $4.68^{\circ}$.

먼저 광학 신호를 이용한 다양한 응용 분야에서의 핵심 요소인 광학 빔 조향 성능 향상을 위하여 실리콘 기반 격자 구조의 특성을 해석하였다. 이를 기반으로 높은 방사 효율과 좁은 빔 폭을 얻기 위해서 기존의 격자 구조 방사기에 분배 브래그 반사기(Distributed Bragg Reflector, DBR)를 집적한 구조를 제안한다. 분배 브래그 반사기의 위치에 따른 방사 효율과 방사 각도의 전치 반폭을 분석하고 이를 토대로 최적화 구조를 제안한다. 제안한 격자 구조는 상보형 금속산화 반도체(complementary metal-oxide semiconductor, CMOS) 공정과 호환 가능하며, 최대 방사 효율 87.1% 및 최소 방사 각도의 반치 전폭 $4.68^{\circ}$를 가진다.

Keywords

HOJBC0_2019_v23n3_311_f0001.png 이미지

Fig. 1 Principle of optical beam steering using siliconbased grating structure. (a) Principle of 1-dimensional beam steering in the longitudinal θ axis. (b) transverse ψ axis. (c) 2-dimensional beam steering using arrayed grating structures.

HOJBC0_2019_v23n3_311_f0002.png 이미지

Fig. 2 Cross-sectional schematic of a silicon-based grating structure and corresponding beam radiation.

HOJBC0_2019_v23n3_311_f0003.png 이미지

Fig. 3 Peak radiation angle θP as a function of wavelength in a single grating structure.

HOJBC0_2019_v23n3_311_f0004.png 이미지

Fig. 4 Normalized intensity of a beam as a function of radiation angle at 1575-nm wavelength.

HOJBC0_2019_v23n3_311_f0005.png 이미지

Fig. 5 Radiation efficiency(square maker) and FWHM ( δθFWHM', circle maker) as function of wavelength.

HOJBC0_2019_v23n3_311_f0006.png 이미지

Fig. 6 Cross-sectional schematic of a silicon-based grating structure integrated with distributed Bragg reflector(DBR) layers.

HOJBC0_2019_v23n3_311_f0007.png 이미지

Fig. 7 Radiation efficiency(square maker) and FWHM (δθFWHM', circle maker) as function of grating-DBR distance( DR ) of a grating structure integrated with DBR.

HOJBC0_2019_v23n3_311_f0008.png 이미지

Fig. 8 Radiation efficiency(square maker) and FWHM (δθFWHM', circle maker) as function of wavelength fixed DR is 800 nm.

References

  1. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, "Coherent solid-state LIDAR with silicon photonic optical phased arrays," Optics Letters, vol. 42, no. 20, pp. 4091-4094, Oct. 2017. https://doi.org/10.1364/OL.42.004091
  2. S. Chung, H. Abediasl, and H. Hashemi, "A Monolithically Integrated Large-Scale Optical Phased Array in Siliconon-Insulator CMOS," IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 275-296, Jan. 2018. https://doi.org/10.1109/JSSC.2017.2757009
  3. K. V. Acoleyen, W. Bogaerts, J. Jagerska, N. L. Thomas, R. Houdre, and R. Baets, "Off-chip beam steering with a onedimensional optical phased array on silicon-on-insulator," Optics Letters, vol. 34, no. 9, pp. 1477-1479, May 2009. https://doi.org/10.1364/OL.34.001477
  4. A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, "Expanding the Silicon Photonics Portfolio With Silicon Nitride Photonic Integrated Circuits," Journal of Lightwave Technology, vol. 35, no. 4, pp. 639-649, Feb. 2017. https://doi.org/10.1109/JLT.2016.2617624
  5. T. Tamir, and S. T. Peng, "Analysis and design of grating couplers," Journal of Applied Physics, vol. 14, no. 3, pp. 235-254. Nov. 1977. https://doi.org/10.1007/BF00882729
  6. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient buttcoupling between compact planar waveguides and singlemode fibers," IEEE Journal of Quantum Electronics, vol. 38, no. 7, pp. 949-955, Jul. 2002. https://doi.org/10.1109/JQE.2002.1017613
  7. A. Taflove, and S. C. Hagness, "Periodic Structure," in Computational Electrodynamics, 3rd ed. Norwood, MA, USA: Artech house inc., 2005, ch. 13, pp. 553-605.
  8. Y. S. Hong, C. H. Cho, and H. K. Sung, "Theoretical analysis of simultaneously improving the light coupling efficiency and bandwidth between two separated grating couplers using integrated distributed Bragg reflectors," Journal of the Korean Physical Society, vol. 71, no. 10, pp. 647-651, Nov. 2017. https://doi.org/10.3938/jkps.71.647
  9. M. Cho, J. H. Seo, J. Lee, D. Zhao, H. Mi, X. Yin, M. Kim, X. Wang, W. Zhou, and Z. Ma, "Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes," Applied Physics Letters, vol. 106, no. 18, pp. 181107, May 2015. https://doi.org/10.1063/1.4921055