DOI QR코드

DOI QR Code

Design and implementation of Multiband Antenna for Satellite Broadcasting Receiving using Beam Tilt

빔 틸트를 이용한 위성 방송 수신용 다중 대역 안테나 설계 및 구현

  • Park, Kwan-Joon (Division of Electronics and Electrical Information Engineering, Korea Maritime and Ocean University) ;
  • Park, Dong-Kook (Division of Electronics and Electrical Information Engineering, Korea Maritime and Ocean University)
  • Received : 2018.11.06
  • Accepted : 2019.02.28
  • Published : 2019.03.31

Abstract

As satellite communication technology with high efficiency and spatiality evolves, demands of customer for efficient and effective satellite broadcasting services are increasing due to interval reduction of the between satellites, and the limited radio-frequency spectrum resources. Recently, research on antenna that it possible to simultaneously receive multiple signal from various satellites while holding maintain the same number of previous reception channels by using the single reflector has been ongoing. It is necessary to be able to simultaneously receive signals from various satellites in order to maintain the same number of previous reception channels. We suggest a multiband antenna which can be simultaneously and independently receiving Ku band and Ka band satellite broadcasting signals transmitted by three adjacent satellites. We have designed and simulated using commercial design tools TICRA CHAMP and CST MWS to meet the target specifications. It appears that the antenna has -10 dB return loss, and more than 40 dBi directivity gain in Ku band and Ka band respectively.

다광역성과 고효율을 장점으로 하는 위성 통신 기술의 진화함에 따라, 위성 간의 간격과 주파수 자원의 제약으로 인해 보다 효율적인 위성방송 서비스에 대한 요구가 증가하고 있다. 최근에 하나의 리플렉터를 사용하여 동일한 수의 이전 수신 채널을 유지하면서 여러 위성으로 부터 여러 대역의 신호를 동시에 수신할 수 있는 안테나에 대한 연구가 진행되고 있다. 본 논문에서는 위성들로부터 전송되는 Ku band (12 ~ 18GHz) 와 Ka band (18 ~ 30GHz) 위성 신호가 반사체를 통해 반사되어 유입될 때, 단일체로 구성된 3개의 피드 혼을 통합한 하나의 피드 혼으로 구성된 안테나를 제안한다. 안테나 설계 및 특성 시뮬레이션은 상용 프로그램인 TICRA사의 CHAMP와 CST사(社)의 Microwave Studio를 사용하였다. 제작한 안테나는 Ku band 대역과 Ka band 대역에서 각각 -10 dB 이하, 40 dBi 이상의 반사손실 특성과 안테나 이득을 나타내었다.

Keywords

HOJBC0_2019_v23n3_318_f0001.png 이미지

Fig. 1 Optimal beam tilt angle of Multi band antenna

HOJBC0_2019_v23n3_318_f0002.png 이미지

Fig. 2 Shape of Ka band antenna (L)

HOJBC0_2019_v23n3_318_f0003.png 이미지

Fig. 3 Shape of Ka band antenna (R)

HOJBC0_2019_v23n3_318_f0004.png 이미지

Fig. 4 Radiation pattern of Ka band antenna (L)

HOJBC0_2019_v23n3_318_f0005.png 이미지

Fig. 5 Radiation pattern of Ka band antenna (R)

HOJBC0_2019_v23n3_318_f0006.png 이미지

Fig. 6 Axis directivity of designed Ka band antenna

HOJBC0_2019_v23n3_318_f0007.png 이미지

Fig. 7 Return loss of designed Ka band antenna

HOJBC0_2019_v23n3_318_f0008.png 이미지

Fig. 8 Gain comparison with antenna size

HOJBC0_2019_v23n3_318_f0009.png 이미지

Fig. 9 3-dB bandwidth comparison with antenna size

HOJBC0_2019_v23n3_318_f0010.png 이미지

Fig. 10 Main reflector shaping

HOJBC0_2019_v23n3_318_f0011.png 이미지

Fig. 11 Directivity of designed single Ku band antenna

HOJBC0_2019_v23n3_318_f0012.png 이미지

Fig. 12 Return loss of designed single Ku band antenna

HOJBC0_2019_v23n3_318_f0013.png 이미지

Fig. 13 Ka band feed horn focus tuning (R)

HOJBC0_2019_v23n3_318_f0014.png 이미지

Fig. 14 Ka band feed horn focus tuning (L)

HOJBC0_2019_v23n3_318_f0015.png 이미지

Fig. 15 Ku band feed horn focus tuning

HOJBC0_2019_v23n3_318_f0016.png 이미지

Fig. 16 Shape of designed multi band antenna

HOJBC0_2019_v23n3_318_f0017.png 이미지

Fig. 17 Far field test configuration

HOJBC0_2019_v23n3_318_f0018.png 이미지

Fig. 18 Far-field radiation pattern (f =18.55GHz)

HOJBC0_2019_v23n3_318_f0019.png 이미지

Fig. 19 Far-field radiation pattern (f =19.55GHz)

HOJBC0_2019_v23n3_318_f0020.png 이미지

Fig. 20 Far-field radiation pattern (f =12.50GHz)

HOJBC0_2019_v23n3_318_f0021.png 이미지

Fig. 21 Test configuration for signal quality measurement

Table. 1 Main specifications

HOJBC0_2019_v23n3_318_t0001.png 이미지

Table. 2 Physical proximity between adjacent satellites

HOJBC0_2019_v23n3_318_t0002.png 이미지

Table. 3 C/N measured result for Koreasat6

HOJBC0_2019_v23n3_318_t0003.png 이미지

Table. 4 Comparison of simulation and experimental results

HOJBC0_2019_v23n3_318_t0004.png 이미지

Table. 5 Comparison of simulation and experimental results

HOJBC0_2019_v23n3_318_t0005.png 이미지

References

  1. B. N. Umar, "Development of Satellite Technology and Its Impact on Social Life," Journal of Journal of Information Engineering and Applications, vol. 3, no. 10, pp. 13-17, 2013.
  2. H. W. Kim, K. S. Kang, and D. I. Chang, "Technical Trends on Utilization of Satellite 2.1GHz Frequency," Journal of Electronics and Telecommunications Trends, vol. 29, no. 3, pp. 86-97, Jun. 2014.
  3. J. M. Park, and D. I. Chang, "Feasibility of New Frequency Allocations to the Fixed-Satellite Service in Ku-band," Journal of Satellite, Information and Communications, vol. 10, no. 3, pp. 137-142, Sep. 2015.
  4. Ministry of SMEs and Startups, "Technology Roadmap for SME 2017-2019 Aerospace," Ministry of SMEs and Startups, 2017.
  5. S.K Kim, D.H. Kim, and S. H. Lee et al. "echnical Trend of Multi-Band Antenna Systems," Journal of Current Industrial and Technological Trends in Aerospace, vol. 11, no. 1, pp. 142-149, July 2013.
  6. KVH TracVision HD11 Commercial Marine Satellite HD TV System [Internet]. Available: https://www.kvh.com/Commercial-and-OEM/Maritime-Systems/Television/HDseries/TracVision-HD11.aspx.
  7. Sea Tel 100 TVHD antenna system [Internet]. Available: https://www.cobham.com/communications-and-connectivity/satcom/tv-at-sea/ku-band-tv-at-sea/sea-tel-100-tvhd/.
  8. Rec. ITU-R S.1524, "Coordination identification between geostationary satellite orbit fixed satellite service networks," ITU Radiocommunication Sector, pp. 1-9, 2001