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Abstract

This paper presents a comprehensive survey of various artificial intelligence (AI) techniques implemented in cognitive radio

engine to improve cognition capability in cognitive radio networks (CRNs). AI enables systems to solve problems by emulating

human biological processes such as learning, reasoning, decision making, self-adaptation, self-organization, and self-stability.

The use of AI techniques is studied in applications related to the major tasks of cognitive radio including spectrum sensing,

spectrum sharing, spectrum mobility, and decision making regarding dynamic spectrum access, resource allocation, parameter

adaptation, and optimization problem. The aim is to provide a single source as a survey paper to help researchers better

understand the various implementations of AI approaches to different cognitive radio designs, as well as to refer interested

readers to the recent AI research works done in CRNs.

Index Terms: Cognitive radio networks, Artificial intelligence techniques

I. INTRODUCTION

The radio spectrum is the unique natural resource totally

assigned to different licensed holders according to the fixed

spectrum assignment policy. It was then analyzed that a large

portion of spectrum is not utilized under time and place [1].

Cognitive radio (CR) was proposed to solve this problem by

opportunistically utilizing the spectrum during the absence

of their owners. It was considered to play a major role for

the under-utilization of spectrum resources to meet the con-

tinuous greatest demand of wireless systems.

Cognitive radio networks (CRNs) enable cognitive users

(or secondary users) to sense the environment in order to

identify spectrum holes, analyse the parameters, and make

decisions for dynamic resource allocation management.

These capabilities are realized through integrating artificial

intelligence (AI) techniques in the heart of the CR. AI

enables cognitive users to solve problems by emulating

human biological processes such as learning, reasoning,

decision making, self-adaptation, self-organization, and self-

stability. Various surveys have been proposed in the litera-

ture for the applications of AI techniques in CRNs. In [2], a

survey on different learning techniques such as fuzzy logic

(FL), genetic algorithms (GAs), neural networks (NNs),

game theory (GT), reinforcement learning (RL), support vec-

tor machine (SVM), case-based reasoning (CBR), decision

tree (DT), entropy, Bayesian, Markov model (MM), multi-

agent systems (MAS), and artificial bee colony (ABC) algo-

rithm were presented. They discussed their strengths and

limitation according to the spectrum sensing and decision-

making. In [3], the state of the art in the use of AI in CR to

ascertain available choices for implementing a practical CR

and the relative merits of various proposed techniques in dif-

fering applications were surveyed. The survey’s techniques

include artificial neural networks (ANNs), metaheuristic

algorithms (MEAs), hidden Markov models (HMMs), rule-
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based systems (RBSs), ontology-based systems (OBSs), and

case-based systems (CBSs). In [4], a survey on different

learning techniques such as RL, GT, NNs, SVM, and MM

were presented. They also discussed their strengths, weak-

nesses, and the challenges. In [5], the authors considered GT,

RL, and reasoning approaches such as Bayesian networks

(BNs), FL, and CBR. In [6], a survey of the AI techniques,

GA, ANN, HMMs, and MEAs were presented, and their

strength and weakness, and open research issues were exam-

ined. 

In this paper the use of AI techniques is studied in applica-

tions related to the main challenges of CRNs including spec-

trum sensing, spectrum sharing, spectrum mobility, and

spectrum management regarding dynamic spectrum access,

resource allocation, parameter adaptation, and optimization

problem. The aim is to provide a single source as a survey

paper to help researchers better understand the various and

recent implementations of AI approaches to different cogni-

tive radio designs. AI techniques mentioned in this paper

includes ANNs, Markov chains (MCs), FL, GT, SVM, RBSs,

OBSs, CBSs, MASs, simulated annealing, and tabu search.

As well as, bio-inspired algorithms including GA, differen-

tial evolution (DE), particle swarm optimization (PSO), bac-

terial foraging optimization (BFO), ant colony optimization

(ACO), cat swarm optimization (CSO), ABC, and artificial

immune system (AIS) are considered. 

A. Cognitive Radio Network: An Overview

CR was firstly defined by Joseph Mitola [7] as “a radio

that is aware of its surroundings and adapts intelligently”. It

has been introduced to respond to the under-utilization of

spectral resources by dynamically access the temporarily

unused spectrum bands. 

CRNs bring new cognitive radio users (CRUs) that should

sense the licensed bands to identify the spectrum holes, and

then exploit them as long as they don’t interfere with the

licensed users. To meet these capabilities, CRN executes the

four main functions of the cognitive cycle [8]. These func-

tions are: spectrum sensing, spectrum management, spectrum

sharing, and spectrum mobility.

Spectrum sensing is an important function in CRNs using

dynamic spectrum access. The CRU must identify available

bands for its transmission and be able to detect the presence

of the primary users (PUs) in order to avoid harmful interfer-

ences. Spectrum sensing can be done by one or multiple

CRUs exchanging information in cooperative way or in com-

petitive manner. Generally exist three spectrum sensing strat-

egies includes transmitter-based sensing method, interference

temperature-based sensing method or through the received

Signal-to-Noise Ratio (SNR) [9]. 

Spectrum management decides and allocates the best

available spectrum band among available bands to meet the

user transmission requirements and improve his throughput. 

Spectrum sharing coordinates access among SUs and share

available spectrum bands between them in fair manner.

Spectrum sharing techniques can be classified as interweave,

underlay, and overlay [10].

Spectrum mobility: In CRNs, the CRUs are considered as

visitors to the spectrum. Hence, if the PU returns to the

channel, the CRU must vacate and switch to a new available

channel, to avoid interfering with the PU as well as to avoid

breaking the secondary communication.

B. Artificial Intelligence: An Overview

AI enables systems to solve problems by emulating human

biological processes such as learning, reasoning, decision

making, self-adaptation, self-stability, self-organization, etc.

The intelligent equipment will learn from its environment to

take advantage of its experience. However, programming

equipment that is capable to adapt to all situations and possi-

bly evolving according to new constraints is challenging.

Cognitive radios need to have the ability to learn and

adapt their wireless transmission according to the ambient

radio environment. Thus, the AI must be implemented and

adopted in the heart of cognitive radio technology. Various

of AI techniques are used and implemented in CRNs includ-

ing ANNs, MMs, FL, GT, SVM, MEAs, RBSs, OBSs, CBSs,

MASs, and evolutionary algorithms such as GA, DE, PSO,

BFO, ACO, CSO, ABC, and AIS. 

II. BRIEF OVERVIEW OF ARTIFICIAL INTELLIGENCE 

TECHNIQUES IMPLEMENTED IN COGNITIVE 

RADIO NETWORKS

In this section, the overview of several AI techniques that

have been implemented in CRNs is presented. The taxonomy

of these different techniques is illustrated in Fig. 1.

A. Artificial Neural Networks

Artificial Neural Networks (ANNs) are networks of con-

nected elementary processors, operating in parallel distrib-

uted processing. Each elementary processor (artificial neuron)

characterized by inputs xi(i = 0…n), weights wij(j = 0…n),

activation function F(x,w), internal state of activation a =

F(x,w), transition function f(a), and the output s = f (a). Each

artificial neuron computes a single output based on the

received information. They are inspired from the biological

brain behaviour.

Exist three types of ANNs used in CRNs, multilayer per-

ceptron networks in two forms linear (MLPN), and nonlinear

(MNPN). These networks consists of multiple layers of com-

putational units, usually interconnected in a feed-forward
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way. Each neuron in one layer has directed connections to

the neurons of the subsequent layer. In MLPN each layer is a

linear combination of the previous layer’s outputs. In MNPN,

the units of these networks usually apply a sigmoid function

as an activation function. The third one is radial basis func-

tion network (RBFN), which has two layers, and is a special

class of multilayer feed-forward networks. Each unit in the

hidden layers employs a radial basis function such as a

Gaussian kernel, as the activation function. The radial func-

tion is centered at the point specified by the weight vector

associated with the unit [11].

B. Markov Chains

Markov Models (MMs) are a mathematical formalism,

which generalizes the short-path approaches in a stochastic

environment. These models include state concepts that sum-

marize the situation of the agent at each moment, the action

that influences the dynamics of the state, and the reward that

is associated to each state transition. They represent the tem-

poral dependencies in a sequence of variables S0…St…,

When each variable only depends on the previous one in the

sequence, we say that we have a Markov chain: P(St |S0, …,

St-1) = P(St |St-1).

C. Game Theory 

Game theory (GT) is a mathematical decision technique

that specifies the behaviours of multiple rational entities

(players) into strategic situations to maximize their rewards.

A game mathematically modelled by 3 variables G = (N, S,

U). N is the set of players, S is the set of strategies, and U is

the set of utility functions. Each player acts according to its

strategy to maximize its utility. Nash equilibrium of a game

is defined as a point at which the utility function of each

player does not increase if the player deviates from that

point [12]. There are four categories of game theoretic

approaches [13] which can used to model the behaviour of

players in wireless environment: cooperative games, non-

cooperative games, auction games, and stochastic games. 

• In cooperative game, the players are grouped as coali-

tions and jointly improve their utility function.

• In non-cooperative game, each player aims to choose the

optimal strategy to maximize his own reward. The

famous concept of this category is the Nash equilibrium. 

• In auction games the players are the buyers who must

Fig. 1. Artificial intelligence approaches for cognitive radio networks.
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select the appropriate bidding strategy in order to maxi-

mize their utility. They are conducted by an auctioneer.

• A stochastic game [13] is an extension of Markov deci-

sion process by considering the interactive competition

among different agents. In a stochastic game, there is a

set of states and a collection of action, one for each

player in the game.

D. Fuzzy Logic

Fuzzy Logic (FL) is a suitable tool for handling inaccu-

racy, uncertainty, and ambiguity in intelligent systems. In a

FL system, the values are represented by fuzzy sets rather

than classical sets. The advantage of this representation is to

simulate the human interpretations. The main components of a

FL system are fuzzifier, fuzzy inference system, and defuzzifier.

Fuzzification is the step that consists in the fuzzy quantifica-

tion of the real values. The fuzzy inference system imple-

ments an inference engine of the type “if…then” that

presents the relationship between the inputs and outputs. In

the defuzzification, the output of the fuzzy system is mapped

into non-fuzzy values as the output of the system.

E. Support Vector Machine 

Support vector machine (SVM) is a binary classification

method based on a linear classifier called hyperplane. This

classifier is assumed to separate the data into two classes

such that the distance between the closest points of each

class to the hyperplane is maximized [14]. This method uses

an efficient training dataset to learn the parameters of the

model. It is based on the use of kernel functions that allow

the optimal separation of data.

F. Rule Based Systems 

Rule based system (RBS) is a classical method of knowl-

edge representation. The rules are extracted from a specific

area and used to make decisions. An RBS consists of rule

base (RB) that contains the list of rules and the inference

engine (IE) to take actions based on the RB. 

G. Ontology Based Systems

Ontology based system (OBS) is the structured set of enti-

ties and concepts representing the meaning of a field of

information and relationships among these concepts. Every

field creates ontologies to limit complexity and organize

information into data and knowledge. In OBS, the ontology

is used to reason about the attributes of the domain of inter-

est [3]. Ontology consists of:

• Classes: a set of objects of the area,

• Instances: individuals belonging to classes of the area,

• Attributes: properties of objects,

• Relations: links between entities,

• Ontology language: to facilitate machine processing, such

as XML, Resource Description Framework (RDF), Web

Ontology Language (OWL).

H. Case Based Systems

Case based system (CBS) is an analogical reasoning. The

solution to new problems is selected from previous similar

cases. The knowledge base is termed as the case base, where

cases are representations of past experiences [5]. Upon new

solutions obtained from case adaptation, the case database is

updated with the new cases. Usually, CBS involves a 4-

stages cycle [5]: retrieve, reuse, revise, and retain.

I. Genetic Algorithm 

Genetic algorithm (GA) is considered as the earliest form

of MEAs that is based on the natural selection and survival

of the fittest. In the GA, the population is generated by ran-

domly selecting a group of individuals called chromosomes.

A chromosome is made up of a fixed number of genes. Each

chromosome in the population is then evaluated using a fitness

function. The individual with higher fitness has high probability

to be selected for crossover operation. Two chromosomes are

then selected to reproduce one or more new chromosomes.

These later suffer mutation operation. Depending on the

requirement of the user, this process continues for a certain

number of generations or until an appropriate solution is

obtained. 

J. Differential Evolution 

Differential evolution (DE) is a stochastic optimization

metaheuristic that has been inspired by GAs and evolution-

ary strategies combined with a geometric research technique.

In DE method, the initial population is generated by uniform

random draw on all the possible values of each variable. The

lower and upper bounds of the variables are specified by the

user according to the nature of the problem. After initializa-

tion, the algorithm performs a series of transformations on

the individuals, in a process called evolution. The DE stan-

dard uses three techniques (mutation, crossing, and selec-

tion) as GAs. At each generation, the algorithm successively

applies these three operations to each vector to produce a

test vector.

K. Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary

computation inspired by the choreographed behaviour and

dynamics motion of swarms of birds or fishes investigating
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the notion of “collective intelligence” in biological populations

[15]. Unlike the GA, the basic PSO algorithm has no cross-

over and mutation operators. In PSO, a population of parti-

cles is created which are randomly distributed over the

search space. The position of each particle is evaluated using

the fitness function. Each particle stores the optimal solution,

it has achieved so far, as personal best. The optimal solution,

achieved so far by the population, is stored as global best.

The position of each particle is updated towards its personal

best and global best. The fitness of each particle’s new posi-

tion is evaluated using the fitness function. If the fitness of a

particle’s current position is better than that of its personal

best position, then the personal best position is updated. The

global best position is also updated which provides the final

global solution to the optimization problem.

L. Bacterial Foraging Optimization

Bacterial foraging optimization (BFO) is an optimization

algorithm based on the feeding behaviour of Escherichia coli

bacteria (E. coli) present in the human gut [16]. The idea of

the algorithm is the application of the foraging group strategy

of swarm of E. coli bacteria in the multi-objective optimization

problem. The search for nutrients by bacteria is done in

order to optimize the energy obtained per unit of time. An

individual bacterium can also communicate with others by

sending signals. The process, in which a bacterium moves in

small steps when searching for nutrients, is called chemotaxis.

Thus, the main goal of BFO is to mimic the chemotactic

movement of virtual bacteria in the multi-objective optimiza-

tion problem.

M. Ant Colony Optimization

Ant colony optimization (ACO) is inspired by the perfor-

mance of biological ants to produce optimized and shortest

paths from their colonies to food sources. The ants randomly

wander and upon finding food, they return to their colony while

laying down pheromone trails. Upon finding a pheromone

trail, other ants follow this trail and thus later continually

reinforced. ACO mimics this ant behavior with “simulated

ants” walking around a graph representing the problem to

solve and finding locally productive areas [3]. ACO algorithms

search in parallel over several constructive computational

threads based on local problem data and a dynamic memory

structure containing information on the quality of the previ-

ously obtained result.

N. Cat swarm Optimization 

Cat swarm optimization (CSO) is a new evolutionary algo-

rithm proposed by [17], which mimics the natural behaviour

of cats when they trace and hunt their prey. Cats are always

attentive and move very slowly. This behaviour is repre-

sented as a search mode. When the presence of prey is

detected, the cats hunt it very quickly. This behaviour is rep-

resented as a tracing mode. These two modes have been

modelled mathematically to solve optimization problems.

O. Artificial Bee Colony 

Artificial bee colony (ABC) is a self-organization behav-

ioral model presented by bee colonies [18]. This model was

inspired by the feeding behaviour of bees. The bees leave

their colony to look for promising food sources. By finding a

good food source, a bee returns to the hive to inform others

bees via an agitation dance which represent a communication

tool. Through this agitation dance, the bee transmits three

important information: the distance, the direction, and the

quality of the source food to other bees. The bee uses this

especially agitation dance to convince other bees to be the

followers and go back the source food. Therefore, more the

bees are attracted to the source food more this later is a

promising source.

P. Artificial Immune System 

Artificial immune system (AIS) is inspired by the human

immune system functioning. It is a defensing mechanism

that is able to learn. One of the immune response types is the

secretion of antibodies. Antibodies are receptor molecules

that recognize and block the antigen. This metaphor is used

by AIS where an antibody will represent a potential solution

to the problem.

Q. Simulated Annealing

Simulated annealing (SA) is a generalized Monte Carlo

optimization technique in which a temperature parameter is

introduced [19]. The historical analogy is inspired by the

annealing of metals in metallurgy: a metal cooled too

quickly has many microscopic defects. However, if it is

cooled slowly, the atoms rearrange, the defects disappear and

the metal then has a very ordered structure. The first phe-

nomenon is equivalent to a local optimum in combinatorial

optimization problem and the second one is equivalent to a

global optimum.

The performance of this approach depends, among other,

on the cooling rule that is used (i.e. the decrease of the tem-

perature parameter T). The fast cooling leads to a local opti-

mum that can be of poor quality. The slow cooling requires

high computation time and the adjustment of the various

parameters (initial temperature, number of iterations per tem-

perature step, temperature decrease, etc.) can be long and

difficult.
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R. Tabu Search

Tabu search (TS) was introduced by Glover [20] and

showed its performance on many optimization problems. The

principle of the algorithm is to examine, at each iteration, the

neighbourhood of the current solution and to select the best

one. Applying this principle, the method allows going back to

solutions that seem less interesting but may have a better

neighbourhood. However, the risk is to cycle between two

solutions. To avoid this phenomenon, the approach prohibits

visiting a recently visited solution. For this, a tabu list of the

attributes of the last visited solutions is maintained. Each new

resulted solution removes from the list of the most formerly

visited solution. As well as, the search for the next current

solution is done on the neighbourhood of the current solution

without considering the solutions of the tabu list.

S. Multi Agent Systems 

Multi agent system (MAS) is a distributed system consist-

ing of a set of reactive or cognitive entities interacting with

each other and locating in a common environment. MAS are

characterized by:

• Each agent has his own skills,

• No global control of the multi-agent system,

• Decentralized data,

• Adding new agents to MAS don’t affect the others,

which explain the scalability and modularity,

• Learning and adaptation,

• Interaction capabilities.

 III. APLLICATION OF ARTIFICIAL INTELLIGENCE 

TECHNIQUES IN COGNITIVE RADIO NETWORKS

In this section, the state of the art of researches addressing

AI techniques to CRNs is presented. They are grouped based

on the major tasks of CRN as shown in Table 1.

A. Spectrum Sensing Task

Spectrum sensing is a binary hypothesis testing to deter-

mine the presence or absence of primary signal. The aim of

spectrum sensing is to detect the spectrum hole, means a

band of frequencies which are not being utilized by PU at a

particular time and specific geographic location. The three

known spectrum sensing methods in CRNs are matched filter

detection (MFD), energy detection (ED), and cyclostationary

detection (CSD). MFD require the prior knowledge about the

PUs signal which will not be always possible. But no prior

information is needed for CSD method and it can extract

information about the primary signal waveform. But this

method is complex to implement. ED is the most common

spectrum sensing techniques because this method does not

require any prior knowledge about the unknown signal. It is

less complex and it takes less sensing time but at the same

time it is susceptible to uncertainty in noise power and it

cannot differentiate between PU and secondary user (SU)

signal.

Considering the limitations of the previous sensing

schemes, spectrum sensing for cognitive radio is investigated

from binary classic aspect and combining it with various

proposed AI tools. The aim of using AI techniques is to opti-

mize the spectrum sensing time, the spectrum sensing error

caused by false alarm rate and miss detection probability. As

well as improve detection accuracy and enhance perfor-

mance stability. 

A neural network model is designed for spectrum sensing

in [21]. The proposed ANN model is used to predict the sta-

tus of channel for a fixed distance in the TV band. Depend-

ing on the channel capacity predicted, the channel status is

decided. The parameters used for training are the distance,

SNR, channel capacity, spectral efficiency over a TV band.

In [22], authors suggested a novel hybrid spectrum sensing

Table 1. Main application of artificial intelligence techniques to cognitive radio networks

AI technique
Spectrum 

sensing

Spectrum 

sharing

Spectrum 

handoff

Spectrum management

Resource 

allocation

Optimization 

problem

Parameter 

adaptation
DSA

ANN � � �

MM � � � �

FL � � � �

GT � � �

MHA � � � �

SVM � �

RBS �

OBS �

CBS � �

MAS � �
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scheme. The proposed scheme is a combination of classical

energy detection, Likelihood Ratio Test statistic (LRS-G2)

and ANN. The authors evaluated the performance of pro-

posed scheme on several real-world primary signals of vari-

ous radio technologies and it has been found out that for all

those radio technologies the proposed scheme outperforms

the classical ED and the improved ED.

The disadvantages of cyclostationary feature detection

technique and Matched filter technique are overcome by the

ANN model developed in [23]. The authors proposed double

threshold method for spectrum sensing. They are combined

the ANN with the cyclostationary and the ED techniques.

ANN is selected to train the samples of signals and detects

the existence of the primary user, specifically the back prop-

agation algorithm. 

Therefore, the ANN has been adopted in spectrum sensing

for CRNs and it’s usually combined with cyclostationary

scheme to provide reliable signal classification and efficient

PU signal prediction because of their ability to be trained at

any time.

The Markov model is used to model random process

changing from one state to another over time. In Markov

models, the states are visible to the observer. However, in

the HMM, some states are hidden or not explicitly visible.

HMMs have been used for spectrum sensing in CR in [24,

25]. Ref [24] proposed to use the HMM to process signal

cyclostationary features for primary signal detection in CR.

In [25], the authors validated the existence of a Markov

chain model for wireless channel utilization with real-time

measured data in the paging band and formulate the spec-

trum-sensing problem using an HMM. The HMM-based pre-

diction method has been widely used in CR networks. In

[26] the authors investigated the use of Non-Stationary Hid-

den Markov (NSHMM) and Hidden Bivariate Markov

(BHMM) Models through simulations and real-time applica-

tion to predict RF channel occupancy in cognitive radio sys-

tems. The results exhibited good potential for enabling

successful secondary use of a large fraction of the available

spectrum. In [27], HMM-based channel state prediction was

proposed. The predicted channel states are output together

with corresponding probabilities that are helpful to subse-

quent decision. The results show that the proposed approach

for prediction of channel state is effective and can be used

together with traditional spectrum sensing techniques for

spectrum sensing. Also it can be utilized to provide predic-

tive information to upper-level modules of cognitive radio.

FLis another attractive technique particularly in cases

where target problems are difficult to model with traditional

mathematical methods, but are at the same time easier for

human people to understand. In cooperative spectrum sens-

ing the decisions on the presence of the PU are based on

observation results from several cognitive radio nodes. The

final decision making process is assumed by the fusion con-

troller. A fuzzy based fusion rule is proposed in [28-30]. In

[28], the considered parameters are energy and SNR

received from the neighboring nodes. The Fuzzy rule has

shown a better performance under probability of detection

and probability false alarm compared to “AND” and “OR”

rules. In [29] the authors proposed a novel distributed coop-

erative spectrum sensing approach by deploying a FLfor

local decision-fusion, the environmental properties and SU-

mobility are utilized in the decision-making process. The

proposed approach is evaluated on a real-world measured

power dataset. The results have been shown high robustness

against instantaneous changes in SUs velocity levels, good

probability of detection at very low SNRs at different mobil-

ity levels, and performance that surpasses the state-of-the-art

research under different SNR and velocities levels. In [30],

the technique takes into account the reliability of the sensing

results at different cognitive radio nodes. The credibility of

the sensing node is determined in a training stage with fuzzy

evaluation. The FLis an efficient tool to CRN environment

where there is limited or no information about certain envi-

ronment factors. It is used in cooperative spectrum sensing

to provide additional flexibility to existing combining methods.

SVMs have been also applied to CRNs. As mentioned in

support vector machine theory, two groups of data easily

separated with a line. However, it is difficult to linearly clas-

sify in practice. Thus, kernel function is proposed to map the

input low dimensional vector into a high dimensional feature

space for linear classification [12]. In [31], SVM is used for

spectrum sensing and real-time detection. The sample data

was classified as a primary user or not by training and test-

ing on the proposed SVM classification model. In [32], SVM

classification technique is considered for cooperative spec-

trum sensing. The SVM scheme is performed in three steps,

gathering training samples, obtaining support vectors from

the training samples, and putting a test sample into the SVM

to classify the PU signals. In [33], authors apply SVM clas-

sification techniques to eigenvalue based spectrum sensing

for cognitive radios. The applications of SVM to CRNs have

been mostly limited to problems of signal classification [12].

SVMs produce very efficient classifiers with high prediction

accuracy and less overfitting even if training examples con-

tain errors. SVMs typically outperform ANNs for limit sam-

ple data, but require prior knowledge of the observed

process’ distribution and labeled data.

Other AI techniques like GT, MAS, and MEA are less

investigated in spectrum sensing field, due to their develop-

ment and evolution style. The GT is an interactive tool that

requires interactivity between two or multiple agents, where

the decision of one is influenced and having an effect on the

other. Therefore, it can be useful in spectrum sharing task to

model the interaction between SUs or between secondary

and primary user. As well as the case of MAS, their applica-

tions found mainly in problem solving interactions and rela-



J. lnf. Commun. Converg. Eng. 17(1): 21-40, Mar. 2019 

https://doi.org/10.6109/jicce.2019.17.1.21 28

tions between different entities. The goal of MEAs is to

succeed in finding a global optimum. For this, the idea is

both to browse the search space, and explore areas that look

promising. Thus, this kind of algorithms can be applied to

computationally hard problems to search through the solu-

tion space while learning and establishing the requisite rela-

tionships [3]. Among the various MEAs, the GA has been

widely adopted to solve multiobjective optimization prob-

lem. Ref. [34] has considered GA to optimize the scheduling

of sensing periods. Ref. [35] uses hybrid approach in cooper-

ative spectrum sensing framework. The evolutionary algo-

rithm based approach for optimizing the global decision

threshold and the weights assigned to different CRs in coop-

erative sensing and a FLbased decision making technique is

proposed to find out a compromise solution on the Pareto

front. A recent research [36] has investigated the multiband

cooperative spectrum sensing optimization problem in CRN,

with the purpose of achieving higher throughput through

jointly optimizing decision thresholds and weight coeffi-

cients. ABC algorithm has been adopted to address the opti-

mization problem. Table 2 present synthesis of some of

researches addressing AI techniques in spectrum sensing for

CRNs and Table 3 gives the advantages and disadvantages of

these techniques.

B. Spectrum Management Task

After performing spectrum sensing, cognitive user (CU)

has to decide the best available spectrum band to allocate,

and to dynamically adjust its parameters to achieve the high-

est performance such as maximizing the exploitation of the

spectrum, meeting users’ quality of service (QoS) require-

ments like rate and delay [2]. This decision-making is

affected by the environment information and is based on AI

algotithms (ANN, MM, CBS, OBS, etc) adapted to the CR

learning and reasoning capabilities. The self-adaptation capa-

bility is mainly based on optimization algorithms such as

GA, DE, swarm intelligence algorithms.

The aim of the integration of these intelligent techniques

to CR engine is to reduce the complexity and improve the

Table 2. Applications in cognitive radio spectrum sensing based artificial intelligence techniques

Application AI approach Reference

Channel occupancy 

prediction

ANN

HMM

[21]:  determine the occupancy status of the TV channel using SNR, channel capacity, bandwidth efficiency and the

distance of the scanning system from the primary TV base station. 

[25]:  use HMM to predict the true states of the sub-band, the Viterbi algorithm is used to reduce complexity of

obtaining likelihood solution. 

[26]:  use the non-stationary hidden Markov and hidden bivariate Markov models to predict RF channel occupancy 

[27]:  apply HMM to predict channel state. The result is combined with corresponding probabilities to help in deci-

sion making.

Primary user signal 

detection

ANN [22]:  incorporate classical ED and likelihood ratio statistics (LRS-G2) into the ANN. It uses the energy value from

ED and the Zhang statistic from the likelihood ratio statistic scheme as inputs to the ANN. The ANN is used in

three phases, ANN training, ANN model selection, and ANN testing.

[23]:  provide double threshold method for spectrum sensing. ANN, precisely back propagation algorithm is used to

train the network for decision making.

Signal type 

classification

HMM

SVM

[24]:  use cycle frequency domain profile (CDP) for signal detection. Signal features are extracted from CDP using a

threshold-test method. For classification, a HMM has been used to process extracted signal features

[31]:  apply SVM to classify sample data as primary user or not by training and testing the SVM classification model

in time domain

[32]:  investigate the MAC protocol identification, identifying the MAC protocol types and MAC layer parameters.

SVM is used as the machine learning technique to perform the identification.

[33]:  provide eigenvalues of the sample matrix to constitute a training data point. SVM used to classify each new

data point to decide the corresponding PU status

Fusion decision FL

[28]:  use FL based fusion rule to make decision by considering received energy and SNR of the neighboring nodes

along with a two bit spectrum sensing result provided by energy detection. 

[29]:  provide distributed cooperative spectrum sensing approach, where a FL is deployed for local decision-fusion,

and such environmental properties and SU-mobility are utilized in the decision-making process.

[30]:  propose fuzzy collaborative spectrum sensing scheme. The final sensing decision is based on the combination

procedure taking into account the credibility of each SU, which is evaluated using fuzzy comprehensive evalu-

ation at the training stage.

Sensing |

optimization

GA

CSO + FL

ABC

[34]:  apply GA to optimize the sensing periods.

[35]:  use CSO to optimize global decision threshold and the weights assigned to different CRs, and FL is used in

decision making to find out a compromise solution on the Pareto front.

[36]:  investigate the multiband cooperative spectrum sensing optimization problem, where ABC is addressed for

non-convex optimization problem.
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convergence in a limited time. As well as achieve efficient

real-time resource allocation. However, the approaches that

we will mention in this section are the main techniques used

and applied in spectrum management in CRNs.

Managing the spectrum means making decision either in

terms of spectrum allocation, or in dynamic spectrum access

or in optimization problem or in parameter adaptation. Vari-

ous AI approaches proposed to solve the later challenges in

CRNs including, but not limited to, ANNs, MMs, FL, GT,

MEA, SVM, RBS, OBS, CBS and MAS.

The ANN has been proposed for radio parameter adapta-

tion in CRN in [37, 38]. In [37], the ANN determines radio

parameters for given channel states to optimize three given

metrics, adjust the BER, maximize the throughput, and mini-

mize the transmit power. In [38], the authors proposed an

ANN-based distributed optimization algorithm for cognitive

wireless clouds, which consists of many heterogeneous ter-

minals and networks. In [39], authors used ANNs to replace

the current frequency allocation system to address the spec-

trum inefficiency problem. They introduced two scenarios:

the single-user case scenario and the multi-user scenario

with weighted allocation. In [40], hybrid approach based on

GA and radial basis function (RBF) to design the cognitive

engine in order to adjust the parameters of the system and to

effectively adapt to the environment changes were proposed.

Decision-making table is used to train the RBF learning

model. The GA is used to adjust the operating parameters of

the RBF neural network such as transmitting power, data

rate, and Medium access control window. The ANN is also

used in dynamic channel selection [41]. 

The beneficial capabilities of adopting the ANNs in CRNs

are their ability to adapt to minor changes in the surrounding

environment, as well their capability to provide information

about the confidence in the decision making. In this field,

the ANN is usually combined with another AI method such

as GA in the training model. But the ANN still less investi-

gated side spectrum management and as an excellent candi-

date side spectrum sensing for prediction and classification

of PU signals. As the case for the SVM technique, where its

application is restricted in this field, e.g. in [42], SVM was

used to solve the optimization problem for the beam-forming

weight vectors.

Several selected MEAs are presented here. They are clas-

sified into two categories: MEAs based set of solution (evo-

lutionary algorithms) and MEAs based single solution as

depicted in Fig. 1 (MEAs branch). Each algorithm has its

own way of evolving as presented in Section II.

The GA has been widely adopted to solve multi-objective

optimization problem, channel selection problem and dynami-

cally configure the CR parameters in response to the envi-

ronment dynamics in [43-48]. In [43], the authors are

interested in finding the optimal spectrum to be allocated to

users in CRN. The parameters used as genes for the decision

making are frequency band, power transmission, bit error

rate and modulation scheme. In [44], the authors combined

GA and ON/OFF primary user activity models to address the

spectrum allocation in CRN. The activity history patterns

generated from four ON/OFF primary user activity models is

combined with the GA as sensing vector to select the best

available channel in terms of quality and least PU arrivals.

In [45], multi-objective parameter adjustment in CR based

on GA is proposed, where the GA is improved by introduc-

ing linear scale transformation and adaptive crossover proba-

bility and mutation probability. In [46] the authors presented

the adaptation mechanism of a cognitive engine which used

GAs to evolve a radio’s parameters to a set of parameters

that optimize the radio for the user’s current needs. In [47],

the authors addressed spectrum optimization in CRs using

elitism in GAs. The parameters used for the chromosome

structure are frequency, power, bit error rate, and modulation

scheme. In [48], the authors used GA to solve the channel

assignment problem in cognitive radio systems. The objec-

tive of this problem concerns minimizing the channel inter-

ference to the PUs. The use of GA is quite appropriate in the

Table 3. Advantages and disadvantages of artificial intelligence techniques used in spectrum sensing issue

Algorithm Advantages Disadvantages

ANN

• Achieve better detection performance under low SNR

• Reliable for signal classification

• Efficient for PU signal prediction

• Ability to be trained at any time

• Long training phase

HMM

• Achieve better classification performance under low SNR with

only limited information on signal bandwidth

• Efficient for PU signal prediction

• Require a huge memory space to store a large number of past observations with

high computational complexity.

FL

• Efficient in case of limited or no information about certain envi-

ronment factors.

• Provide additional flexibility to combining methods

• High computation time to decide due to its wide range of possibilities

• Highly depends on the fuzzy inference rules which may be tuned manually,

and settings can be made by trial and errors.

SVM
• Efficient classification with high prediction accuracy for limit

sample data

• Require prior knowledge of the observed process’ distribution and labeled data

• Overfitting
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context of cognitive radio to control and avoid interference

in the channel assignment problem. In [49], authors pre-

sented a novel hybrid dynamic spectrum access approach,

combining classical and stochastic flavors being augmented

with new genetic operators, for multi- channel single-radio

cognitive radio networks.

Swarm intelligence refers to a class of evolutionary algo-

rithms in which it’s imitate the intelligence from social coopera-

tive animals such as ants, bees, cats, etc. Swarm intelligence

techniques highlight in general distributed implementation

and coordination through communication. Solutions based

on swarm intelligence techniques have been proposed for

CRNs. Swarm intelligence techniques has been used recently

in the CR systems to reduce the computational cost of GA.

In [50], the authors propose an adaptive discrete PSO algo-

rithm for adaptation of transmission parameters and achieve-

ment of Quality of Service (QoS) requirements of a CR node

using multi-objective optimization. ACO is proposed in [51]

to response to spectrum allocation problem in CRN. The

authors designed an improved ant colony optimization algo-

rithm (IACO) from two aspects: first, they introduced differ-

ential evolution (DE) process to accelerate convergence

speed by monitoring mechanism; then they designed a vari-

able neighborhood search (VNS) process to avoid the algo-

rithm falling into the local optimal. The dynamic spectrum

allocation is also investigated in [52] using an improved

combined approach of particle swarm optimization (PSO)

method and SA to form the PSOSA algorithm. The SA is

used to modify the PSO. Multi-objective evolutionary algo-

rithm based CSO is applied in [53] to the parameter adapta-

tion problem of an OFDM based cognitive radio engine. A

FLbased decision making technique is introduced. A com-

parative analysis of six evolutionary algorithms is presented

in [17] to adapt the parameters of CR in a time varying wire-

less environment. The mentioned EAs are genetic algorithm

(GA), particle swarm optimization (PSO), differential evolu-

tion (DE), bacterial foraging optimization (BFO), artificial

bee colony (ABC) optimization and cat swarm optimization

(CSO) algorithm. The performance of each algorithm is tested

in single and multicarrier communication system in order to

acknowledge the advantage of multicarrier communication

systems in wireless environment.

After analyzing the existing researches, we noticed that

each metaheuristic algorithm has its own advantages and dis-

advantages. GA is powerful in terms of its ability to determine

the performance of unknown system with least knowledge and

it can initialize itself from possible solutions rather than a

single solution. While it lacks in convergence to the global

optima due to poor parameter settings, infinite research and

also the random processes of crossover and mutation. While

PSO algorithm is simple and has fast converging behavior, it

is effective in global search, but it suffers from the partial

optimism, which causes the inaccuracy at the regulation of

its speed and the direction, as well it requires high computa-

tion time. ABC Algorithm is simple and efficient, easy to

implement, robust and highly flexible. The limitation of

ABC result in its requirement of new fitness tests for the

new parameters to enhance performance, which leads to high

computation and the need for a high rate of objective func-

tion evaluations. ACO has various strengths include fast

solution finding due to its ability to offer positive feedback,

as well it has distributed computation which avoids prema-

ture convergence. Also it takes advantage of the existing col-

lective interaction of a population of agents. But it suffers

from slower convergence compared to other MEAs and lacks

a centralized processor to guide it towards good solutions.

Although the time for convergence is uncertain, the conver-

gence is guaranteed. As well as, it gives poor performance

within large search spaces. DE is beneficial in terms of

improving the ability of local search and guarding the multi-

plicity of the population. The disadvantages of DE are the

slow convergence and being unstable. The advantages of

BFO are the ability to gather information very quickly from

its environment and neighbours which leads to fast search of

the optimum and the capability to ensure the cell-to-cell

communication capabilities. Its limitations including poor

convergence behaviour over multi-modal and don’t hold the

fittest bacterium for the succeeding generation. The benefi-

cial capabilities of CSO that is fast in discovering good solu-

tions and adapting quickly to changes. But it suffers from the

sequences of random decisions which are not independent

and from the slow convergence. Finally, as strengths of AIS,

we cite the ability of self-stabilizing, providing superior per-

formances in multi-modal and suitable in cases when no

such prior knowledge is available, but is limited to lack run-

ning stability and requirement of higher number of iterations

to locate the global optima. Therefore, an algorithm can be

selected depending in one hand on the accuracy and the

computation speed, in other hand on the hardware capabili-

ties such as processor speed, memory, etc. In Table 4, we

summarize the strengths and limitations of the several evolu-

tionary algorithms considered in this work.

The key advantage of using MEA in CRN is their ability

to dynamically reconfigure the CR over the changes and

dynamics of the surrounding environment. They are consid-

ered as excellent candidate algorithms to solve multi-objective

optimization problem in which the objectives are contradic-

tory in nature such as maximizing data rate and minimizing

bit error rate. Particularly, swarm intelligence provides a new

structure for the design and implementation of MASs that

are able to cooperate to solve a complex problem. As well,

the majority of research in this field has so far focused on

intelligent swarm-based cognitive radio systems for solving

problems that require cooperation, self-configuration, self-orga-

nization, self-adaptability, self-stability, etc. On the other hand,

the recent trend of research in meta-heuristic computing is mov-
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ing towards the hybridization of these methods to take advan-

tage of two or more methods and to mitigate the limitations.

FL is also adopted in the decision making for CR recon-

figuration for adapting to user requirements and system

resources in [55]. Recent attempts of using FL to channel

selection in CRN are made in [56] and [57]. In [56], authors

used FL for prioritizing channels in the backup and candi-

date channel. The result help to rank channels i.e. to help for

selecting the operating channel from the backup channel list,

and selecting better channel to promote to backup channel

from candidate channels. In [57], an improved channel allo-

cation mechanism was proposed. They considered the received

signal strength to define the channel access priority of SUs

applied by fuzzy theory. The results have shown the perfor-

mance of the approach and the effectiveness of the mecha-

nism. Fuzzy inference rules for resource management in a

distributed heterogeneous wireless environment are proposed

in [58]. The fuzzy convergence is analyzed in two levels, the

first based on local parameters such as interference power,

bandwidth and path loss index. The second based on aggre-

gated information collected from all nodes to generate a

global control for each node.

In general, the benefit of exploiting FLis its low complex-

ity and its suitability for real-time applications. In addition

of its ability to obtain solutions with imprecise and incom-

plete input information. Although it suffers from the stability,

accuracy, and optimality of the system are not guaranteed.

GT presents an efficient platform for modelling interac-

tions behaviour among cognitive users in CRNs. In [59], the

authors presented game theory for modelling resource allo-

cation in ad hoc CRNs. In [60], the authors used GT as a

utility function to model the payoffs between considered

players (SUs and PUs). Repeated games were applied for

dynamic spectrum access (DSA) in [61]. GT is advantageous

in terms of reduces the complexity of adaptation algorithms

in large CRNs and provides solutions for decentralized

MASs [2], but it is limited to its requirement for prior

knowledge of the utility function of each user.

Also MMs have been participate to the decision making in

the spectrum management under various utilizations. They

are used in [62] for modelling and analyzing the competitive

spectrum access among CRNs. MM is applied to DSA in

[63], [64] where HMM is used to model a wireless channel

and predict the channel occupancy. Since MM based on gen-

erating sequences of observation of success transition states,

it stills a useful tool for prediction and classification in spec-

trum sensing task.

Several works are addressed the issue of CR resource

management by introducing MAS in [65, 66]. In [65], a

Bayesian Network based multi-agent railway communication

Table 4. Advantages and disadvantages of different evolutionary algorithms used in spectrum management

Method Strength Limitation

GA
• Ability to define the performance of unknown system with few knowledge

• Ability to initialize itself from possible solutions rather than a single solution

• Slow convergence to the optimal values since the crossover and muta-

tion process are random

• High computation time

DE

• Enhance the capacity of local search

• Keep the multiplicity of population

• Good convergence properties

• Slow convergence and unstable

PSO

• Simple to implement 

• Fast convergence behavior

• Less computation time

• Has only a few parameters to be set

• Effective in global search

• Suffer from the partial optimism, which causes the inaccuracy at the

regulation of its speed and the direction

• Tendency to result in a fast and premature convergence in mid optimum

points

BFO

• Have the cell-to-cell communication capabilities

• Ability to gather information from their environment and neighbors very

quickly which leads to fast search of the optimum

• Poor convergence behavior over multi-modal

• Do not hold the fittest bacterium for the succeeding generation

ACO

• Offer positive feedback resulting in rapid solution finding

• Have distributed computation which avoids premature convergence

• Assume collective interaction of a population of agents

• Lack a centralized processor to guide it towards good solutions

• Time for convergence is uncertain, but the convergence is guaranteed

• Poor performance within problemswith large search spaces

CSO
• Fast discovery of good solutions

• Adapts to changes

• Sequences of random decisions (not independent)

• Time to convergence uncertain, but it is guaranteed

ABC
• Simple and efficient

• Easy to implement, robust, and highly flexible

• Require more and correct information about the problem model

• Require new fitness tests resulting slow computation

• Need for a high amount of objective function evaluations

AIS

• Ability of Self-Stabilizing

• Provide superior performances in multi-modal

• Suitable in cases when no such prior knowledge is available

• Lack running stability

• Require a higher number of iterations to locate the global optimum



J. lnf. Commun. Converg. Eng. 17(1): 21-40, Mar. 2019 

https://doi.org/10.6109/jicce.2019.17.1.21 32

model for channel accessibility using a fusion of prior and

validated information is proposed. This model consists of

Bayesian inference to calculate the probability of successful

transmission on a single station along with team collabora-

tion to maximize network performance within a group of

base stations. Instead of only performing the traditional sens-

ing and assigning, the base stations have an ability to learn

from the interactions among others and the environment to

gain prior knowledge. The base station agents further ana-

lyze prior knowledge and perform optimal channel assign-

ment for global network performance. In [66], the authors

uses multi agent Q-learning algorithm to model the spectrum

allocation scheme. MAS provide solutions using interactions

between agents or users to improve the performance of the

system. Therefore, this technique can be considered as very

important tool in the spectrum sharing area.

OBR has shown as well its potential to satisfy the aware-

ness and reasoning requirement of CR. Cognitive radio

ontology (CRO) has been proposed in [67]. In this paper, the

authors refined the OBR concept and test it on a link optimi-

zation use case. They are developed a CRO in OWL to rep-

resent the basic terms of wireless communications. Based on

this ontology, authors developed a set of policies and rules to

optimize the link performance. The results shown that the

ontology and policy approach can infer implicit knowledge

and this implicit knowledge can bring benefits to the com-

munication efficiency. OBR is also used to apply spectrum

policy to DSA in [68], [69]. In [68] the spectrum ontology

defines the various DSA concepts, models the domain of

DSA networks in a machine-understandable manner, and

uses Semantic Web Rule Language (SWRL) rules to repre-

sent spectrum policies. Our policy reasoner implementation

is able to handle all ontology operations, including ontology-

consistency checking and ontology information editing. In

[69], ontologies and rules are combined to achieve a knowl-

edge driven differential-response capability, which, as

defined by the authors, is the capability of reasoning about a

failure in an attempt and identifying alternative actions to

satisfy the goal using knowledge of radio technology, policy,

goals, and other contextual information. The advantages of

this AI technique is its ability to make a terminal under-

standable, i.e. a radio equipped with an OBS can understand

the capability and characteristics of itself and other radios

using logic deduction. This understanding, as well as the

understanding of the environment, helps the radio to deduce

optimal operating parameters [3]. Another advantage is that

OBR can infer implicit knowledge. However it is limited to

the high size of an ontology which requires high processing

time to meet user’s need.

CBR is based on solving new situations by finding the

previous similar case and projecting the solution to current

problem. CBS is used in [70] to present spectrum allocation

scheme. In this paper the CBS is used to identify the type of

channel required by a cognitive user. In [71], the authors

used hybrid approach of CBS and GA to resolve the parame-

ter adaptation problem. In [72], the authors introduced a

CBR engine to exploit candidate channels for a tactical cog-

nitive radio node by taking into account the PU’s channel

occupancy patterns. The results confirmed the reliability of

the functional aspect, which includes the learning engine, as

well as the case-based reasoning engine. In [73], the authors

combined CBS and FL to determine the channel type. The

attractive property of using CBR in CRNs that is allows

learning without knowledge on how rules and cases are cre-

ated [2]. As well, CBR is simple and easy to implement. But

it suffers from many limitations. It is highly depend on pre-

constructed database. It can take high processing time

searching in the database to identify similar cases. The deci-

sion processes relies on previous situation which can provide

error patterns. Therefore, CBR needs to be combined with

another method such as ANN, GA, etc. to provide an effi-

cient training before decision making.

RBR is also adopted in CR to implement a cognitive radio

engine in [74, 75] as a helpful tool in the decision making.

RBR is advantageous in terms of its facility to be understood

and interpret because it is similar to human reasoning.

Another advantage is its modularity, because, it is possible to

add and remove rules according to the user requirements.

However, RBR is disadvantageous in terms of the accuracy

depends on the completeness and accuracy of the underlying

rule base. If the domain is not perfectly understood, the RBS

might return inappropriate responses [3]. In the Table 5, we

present synthesis of several literature works addressing spec-

trum management based AI techniques and Table 6 gives the

advantages and disadvantages of each approach in this field.

C. Spectrum Sharing Task

Spectrum sharing allow to share and manage the available

underutilized radio resources between multiple candidate

CRUs, in order to avoid the interference to the PUs as well

as to avoid the interference between CRU’s transmissions.

Coexistence techniques of CRUs with PUs can be assumed

under interference limit approach (underlay), interference

avoidance approach (interweaved), or both (overlay). Inter-

ference limit technique allows CRU to access a licensed band

simultaneously with PUs as long as a predetermined tem-

perature limit constraint is met at all time. In interference

avoidance method, CRU can only access a band if the PU is

not currently occupying its band. Other access strategies allow

CRUs to use licensed spectrum both simultaneously with the

PU and when a spectrum hole is determined by adjusting

their maximum transmission power. In addition to coexisting

with PUs in a spectrum band, CRUs must coexist with each

other, i.e. self-coexistence [76]. In this section we review

proposed paradigms introducing AI techniques to spectrum
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sharing task.

GT is found to be the most candidate mathematical tool to

deal with interactions among users. It tries to find an optimal

solution to maximize the reward of every agent without

harming one another. In [77], the authors presented an over-

view of several categories of game theoretic approaches used

in spectrum sharing for CRNs.

A spectrum sharing based cooperative game (CG) theory

is proposed in [78-81]. In [78], A CG is formulated to quan-

tify and share the benefits of cooperation by accessing iden-

tified idle channels in a fair manner. The characteristic

function describing the CG is based on the worth of SUs,

which is calculated according to amount of work done for

coalition by increasing awareness about state of spectrum

Table 5. Applications in cognitive radio spectrum management based artificial intelligence techniques

Application AI approach Reference

Reconfiguration

and parameter 

adaptation

ANN

GA

PSO

CSO + FL

FL

CBR + GA

[37]: use ANN to adapt radio parameters for given channel states. Adjust the BER, maximize the throughput,

and minimize the transmit power.

[38]: provide ANN as a distributed and autonomous optimization machine for heterogeneous wireless networks.

[45]: apply improved GA by introducing linear scale transformation and adaptive crossover probability and

mutation probability to address multi-objective parameter adjustment

[46]: use GA to find a set of parameters that optimize the radio for the user’s current needs.

[50]: use adaptive discrete PSO algorithm for adaptation of transmission parameters and achievement of quality

of service requirements of a CR node.

[53]: apply CSO to the parameter adaptation problem of a OFDM based cognitive radio engine, and use FL in

decision making to find out a compromised solution on the Pareto front.

[55]: address decision making mechanism to avoid the ping-pong effect of multiple reconfigurations and exploit

FL reasoning approach for terminal reconfiguration decision, focusing on resource management and proto-

col configuration.

[71]: use CBR quantum genetic algorithm (CBR-QGA) in cognitive engine to adjust and optimize the radio

parameters. EVF is used to avoid the blindness of initial population searching and speed up the optimiza-

tion of quantum genetic algorithm.

Resource 

allocation

ANN

GA

ACO + DE

PSO + SA

FL

GT

MAS

CBR

[39]: use ANN to replace a complicated frequency allocation system in the CR. The solution makes sure that the

frequency allocation working well in an easier system and with less waste of resource.

[44]: combine GA with primary user ON/OFF models to select the best available channel in terms of quality and

least PU arrivals.

[48]: present GA to solve the channel assignment problem in CRNs.

[51]: adopt ACO for spectrum allocation, which introduces DE to accelerate convergence speed by the monitor-

ing mechanism, and employ a variable neighborhood search (VNS) to avoid falling into the local optimum.

[52]: solve the nonconvex optimization problem using PSO. Combine SA with PSO to form the PSOSA algo-

rithm, to overcome the inherent defects and disadvantages of these two individual components.

[56]: utilize FL for prioritizing channels in the backup and candidate channels list.

[57]: apply fuzzy inference system to define the channel access priority of SUs.

[58]: develop Fuzzy Convergence approach to aggregate wireless node control with affordable message overload.

[59]: introduce the concepts of modeling resource allocation with game theory.

[66]: use MA reinforcement learning (MARL), Q-learning algorithm, on channels selection decision by SUs in

2×2 and 3×3 CR system.

[70]: introduce CBR to identify channel preferred by SU. Then automatic collaborative filtering for preference

between two users which assigns the particular channel to the highest prioritized user.

Optimization

SVM

GA

GA+PSO+DE+BFO 

+ ABC + CSO

[42]: present SVM to solve the optimization problem for the beamforming weight vectors.

[47]: provide GA for optimization to accommodate the SUs in best possible space in the spectrum

[54]: provide comparative analysis of six evolutionary algorithms for optimizing the predefined fitness functions

in the radio environment.

DSA

ANN

GA

GT

MMs

OBS

[41]: introduce ANN to learn how environmental measurements and the status of the network affect the perfor-

mance experienced on different channels, and therefore dynamically select the channel.

[49]: devise an intelligent DSA algorithm by exploiting a synergy between GA based stochastic method and

classical local search based novel genetic operators.

[61]: apply repeated games for DSA.

[62]: use MMs for modelling and analyzing the competitive spectrum access among CRNs.

[64]: use HMM to model a wireless channel for DSA and predict the channel occupancy

[68]: provide ontology-based policies to construct the policy reasoner that can understand and process any spec-

trum policies authored by any organization by relying on the spectrum ontologies.

[69]: apply spectrum policy to DSA using OBS.
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that may also be seen as reduction in uncertainty about PU

activity. In [79], authors used gale shapely algorithm to

achieve cooperation among the cognitive radios for spectrum

detection and sharing. This algorithm results in formation of

stable coalition of cognitive radio. In order to form coopera-

tive group each cognitive radio prepares a preference list of

other radio in the vicinity with which the cognitive radio

wants to cooperate and hence form coalition. Each cognitive

radio makes an offer to cognitive radio in its preference list.

In [80], authors described a framework for modelling the

spectrum sensing and sharing problem in cognitive radios as

a cooperative coalition game. The worth of individual play-

ers and also of each coalition in the game is calculated with

respect to the work done by the players for its coalitions. In

[81], a Cooperative Bargaining game in cognitive small cell

networks is proposed. This approach is used for Interference-

aware resource allocation. In the bargaining process, each

player follows its individual bargaining strategy that maxi-

mizes its utility.

A spectrum sharing scheme based Stackelberg game is

introduced in [82-84]. In a Stackelberg game, one player acts

as a leader and the rest as followers, and the main goal is to

find an optimal strategy for the leader, assuming that the fol-

lowers react in such a rational way that followers optimize

their objective functions given the leader’s actions [83]. In

[82], authors formulated a Stackelberg game where licensed

network is the leader followed by a number of non-coopera-

tive cognitive radio sensor network (CRSN) as actor nodes.

In the proposed game, the licensed user imposes a price on

the shared frequency band and the CRSN nodes have to buy

the band to serve their own networks. In [83], based on the

multiple-leader multiple-follower Stackelberg game model,

the authors increased opportunistic use of the licensed radio

spectrum. To adaptively use the spectrum resource, control

decisions are coupled with one another; the result of the each

user’s decisions is the input back to the other user’s decision

process. In [84], authors focus on spectrum sharing in het-

erogeneous wireless sensor networks (HWSNs) and consider

Stackelberg game exploiting the CR technology. In the game,

the licensed network controls and prices the available spec-

trum resource which the WSN relay: actor nodes can purchase

and use to serve the attached sensor nodes as well as offload

some nodes in licensed network. The authors evaluated the

impact on throughput performance and they proved that the

proposed approach significantly improve the throughput of

victim licensed nodes with slightly decreasing network total

throughput.

A spectrum sharing based auction game in presented in

[85, 86]. In a simple spectrum auction scenario, the primary

owners act as auctioneers and sell their idle spectrum bands

to SUs to make a profit, and the SUs act as bidders who

want to buy spectrum bands. In [85], authors considered a

CRN consisting of a primary spectrum owner (PO), multiple

PUs and multiple SUs. They designed an auction-based spec-

trum sharing mechanism where the SUs bid to buy spectrum

bands from the PO who acts as the auctioneer, selling idle

spectrum bands to make a profit. In [86], the authors investi-

gated a spectrum trading problem under relatively realistic

settings, where heterogeneous channels under buyers' budget

constraints are considered, while maintaining incentive com-

patibility and individual rationality. The proposed auction

game consists of a price-setting PO aiming on maximizing

its total revenue and SUs bidding channels for reasonable

values. The results have shown performance improvements

in PO revenue and SU utility over reference approaches.

Generally, MAS has also been exploited for spectrum

Table 6. Advantages and disadvantages of artificial intelligence techniques used in spectrum management issue

Algorithm Advantages Disadvantages

ANN
• Ability to adapt parameters to minor changes in surrounding environment

• Provide information about the confidence in the decision made
• Long training phase

MEAs

• Excellent for multi-objective optimization

• Ability to dynamically reconfigure the CR over the environment dynamics

• Ability of self-configuration, self-organization, self-adaptability, self-stability

• See Table 4

FL
• Low complexity

• Suitable for real-time
• Suffer from the stability, accuracy, and optimality of the system

GT • Reduce the complexity of adaptation algorithms in large CRNs • Require prior knowledge of the utility function of each user.

OBS
• Ability to make a terminal understandable

• Infer implicit knowledge

• High size

• High processing time

CBS
• Simple and easy to implement

• Similar to human reasoning

• Highly depend on pre-constructed database

• High processing time searching

• Decision processes relies on previous situation which can return

inappropriate responses

RBS

• Facility to be understood and interpret

• Similar to human reasoning

• Modularity

• Can return inappropriate responses

• Accuracy depends on the completeness and the underlying rule

base
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sharing in CRNs, in [87, 88]. Where authors considered

cooperative MAS in which the agents are deployed on PU

and SU devices. The PU agents exchange a tuple of mes-

sages and help neighboring SU agents to enhance their spec-

trum utilization. The individual SU agent should send messages

to the appropriate neighboring PU agents whenever needed

and, subsequently, the related PU agents should reply to

these agents in order to make spectrum sharing agreements.

The SU agents take their decisions based on the amount of

spectrum, time and price proposed by the PU agents and

start spectrum sharing whenever they find an appropriate

offer. SU agents pay the agreed price to the respected PU

agents after completely utilizing the desired spectrum.

The spectrum sharing challenge is also addressed using

bio-inspired paradigms, such as GA, ACO and PSO. In [89],

authors proposed a spectrum sharing technique based on the

improved quantum genetic algorithm (QGA) in a non-coop-

erative game for CR system. They considered a CR environ-

ment where PUs are allocated with a licensed radio spectrum

and the utilization of which could be improved by sharing it

with the SUs. They formulated the spectrum sharing problem

as a game SUs compete for the spectrum offered by the PU

and the cost of the spectrum is determined by using a pricing

function. The QGA used as a competitive strategy. In [90]

spectrum sharing is addressed using adaptive task allocation

model of an ant colony. In [91] the socio-cognitive particle

swarm optimization algorithm is used to address spectrum

sharing in an underlay system.

In Table 7 we present synthesis of several papers address-

ing spectrum sharing based AI approaches and Table 8 show

the strengths and limitations of these approaches.

D. Spectrum Mobility Task

The major goal of spectrum mobility in CRNs is to pro-

vide seamless channel switchover without interruption of

ongoing SU’s transmission. Thus spectrum mobility is car-

ried out according to two procedures, i.e. spectrum handoff

and connection management [92]. The first one is the pro-

cess of switching ongoing transmission data from the current

channel to another available channel. For channel handoff, it

takes significant time called as spectrum handoff delay,

which is the time spent to search for another available chan-

nel and radio frequency reconfiguration process by SUs. To

cover the inevitable handoff delay, connection management

process occurs to manage protocol parameters depending on

current situation.

Spectrum handoff occurs in three cases: PU arrival, SU

mobility and link quality degradation. This three situations

force SU to perform spectrum handoff. Generally, spectrum

handoff in CRNs is categorized into two main strategies:

proactive and reactive. In the primary, the channel selection

is done based on sensing PU traffic before the switching

event. In latter, the channel is selected by instant sensing after

the occurrence of switching event. The SUs affected by the

handoff event resume their transmission on a new searched

free channel. Thus, in both types, the channel selection is done

by continuously observing the signals of PUs [93]. Therefore,

Table 7. Applications in cognitive radio spectrum sharing based artificial intelligence techniques 

Application AI approach Reference

Cooperative sharing

GT

MAS

ACO

PSO

[78]: apply cooperative GT to quantify and share the benefits of cooperation among SUs.

[79]: use gale shapely algorithm to achieve cooperation among CRs for spectrum detection and sharing.

[80]: present cooperative coalition GT.

[81]: use cooperative bargaining game for Interference-aware resource allocation.

[87, 88]: provide spectrum sharing based cooperative MAS.

[90]: provide spectrum sharing based adaptive task allocation model of an ant colony.

[91]: design spectrum sharing based socio-cognitive PSO algorithm.

Non cooperative sharing

GT

GA

[82-84]: introduce spectrum sharing scheme based Stackelberg game

[85, 86]: present spectrum sharing based auction game

[89]: present spectrum sharing based improved quantum GA.

Table 8. Advantages and disadvantages of artificial intelligence techniques used in spectrum sharing issue

Algorithm Advantages Disadvantages

GT
• Provide good analyzed behaviours and actions for users under formalized game structure

• Provides well-defined equilibrium criteria 
• Require prior knowledge 

MAS

• Easy to implement since MAS provide similarities between an agent and CR (awareness, autonomy,

working together…)

• Ability to give information exchanges by working with their neighbours 

• Provide an infrastructure to enable the cooperation and negotiation between the participating agents.

• Flexible 

• Can provide spectrum loss in case of

disagreements between users 

• Can give failure proof due to the redun-

dancy of agents and the self-managed

features
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spectrum handoff decision is an important issue in CRNs.

Different AI techniques have been used in the learning

design of CRN to improve spectrum handoff decision made.

A proactive handoff scheme based FL is proposed in [94-

96]. In [94], authors presented fuzzy analytic hierarchy pro-

cess for the handoff decision. This strategy reserves a num-

ber of backup channels characterized on the basis of QoS

required by SUs. In [95], the proposed algorithm is based on

two FL controllers. The first is to measure the distance

between PUs and SUs. It estimates as well the transmission

power of the SU for not affecting the transmission of neigh-

bouring PUs. The second is designed to check whether an

SU should stay or leave the current channel. In [96], the pro-

posed fuzzy algorithm is a multiple criteria decision making

technique that has proven to be an effective method for the

selection of backup channel alternatives. This algorithm is a

hybrid between Analytical Hierarchical Process Algorithm

complemented with FL, it improves the management of sub-

jectivity and reduces uncertainty in the information. In [97],

FL based spectrum handoff algorithm in multihop underlay

cognitive radio Adhoc networks is presented. Authors used

FL controller to help SU adjust the transmitting power of the

radio signal. If power adjustment is unlikely to lower the

aggregate interference, then SU should do spectrum handoff.

The random appearance of PUs on a specific channel can

significantly degrade the secondary ongoing transmissions

due to the various interruptions. For this effect, several authors

have proposed MMs to manage spectrum handoff. In [98], a

HMM has proposed to optimize handoff decision. The model

is used to check the channel state and correct spectrum sens-

ing decisions. In [99], the authors proposed a two state con-

tinuous time MC to model the channel availability for SUs

by considering SU's mobility. In [100], the authors presented

a handoff strategy for cognitive ultra-wide band industrial

networks, by the coexistence of primary and secondary users

on a channel. The busy and idle states of a channel are mod-

elled using MMs. In [101], the authors used a discrete time

MC to model channel access and handoff scheme. The scheme

allows an SU to identify the channel state and to decide even

to stay idle on the current channel or to perform handoff.

The main advantages and limitations of the intelligent tech-

niques applied in spectrum handoff issue are summarized in

table 10. Most of the existing spectrum handoff researches

lack the intelligent learning features in their design. Despite

the importance of spectrum handoff process in CRNs, still this

issue requires further in depth investigation. Table 9 syntheses

the various researches addressing spectrum handoff based AI

techniques. Table 10 gives their strengths and weakness.

IV. CONCLUSIONS

This paper addressed a survey of several AI techniques

that have been implemented in cognitive radio designs. The

application of these intelligence approaches have been stud-

ied related to the decision making in the major issues of cog-

Table 9. Applications in cognitive radio spectrum handoff based artificial intelligence techniques

Application AI approach Reference

Proactive handoff FL

[94]: present fuzzy analytic hierarchy process for the handoff decision. This strategy reserves a number of backup

channels characterized on the basis of QoS required by SUs.

[95]: propose two FL controllers. The first measures the distance between PUs and SUs and estimates he transmission

power of the SU for not affecting the transmission of neighbouring PUs. The second designs to check whether an

SU should stay or leave the current channel.

[96]: combine analytical hierarchical process algorithm with FL for the selection of backup channel alternatives. 

[97]: use FL controller to help SU adjust the transmitting power of the radio signal.

Reactive handoff MMs

[98]: hidden Markov model (HMM) has proposed to optimize handoff decision.

[99]: propose two state continuous time Markov chain to model the channel availability for SUs by considering SU's

mobility.

[100]: present a handoff strategy for cognitive ultra-wide band industrial networks. The busy and idle states of a chan-

nel are modelled using MMs.

[101]: use a discrete time Markov chain to model channel access and handoff scheme.

Table 10. Advantages and disadvantages of artificial intelligence techniques used in spectrum handoff issue

Algorithm Advantages Disadvantages

FL
• Provide high channel utilization

• Assume high throughput achieved by cognitive users

• High design complexity

• Lack stability and robustness

• Wastage of backup channels

MM
• Define channel usage efficiently

• Provide high accuracy
• In some cases, SUs can still affect PU’s transmission
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nitive radio networks considering spectrum sensing, spectrum

management, spectrum sharing and spectrum mobility. A

discussion of the algorithms was provided related to each

major task with their advantages and disadvantages.

We have seen that the relevance of AI techniques varied

by application and implementation. The decision in choosing

one or some AI techniques over other techniques to cogni-

tive radio design can be done depending in one hand on the

application requirement, the available prior knowledge, the

accuracy, the robustness and the computation complexity, in

other hand on the hardware capabilities such as processor

speed, memory, etc.
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