에어로솔 공정 기반 다공성 나노구조체의 제작과 응용

  • 손희상 (광운대학교 화학공학과)
  • 발행 : 2019.04.01

초록

키워드

참고문헌

  1. Y. Lu, Surfactant-Templated Mesoporous Materials: From Inorganic to Hybrid to Organic, Angew. Chem. Int. Ed., 45, 7664 (2006). https://doi.org/10.1002/anie.200602489
  2. Q. Xiao, H. Sohn, Z. Chen, D. Toso, M. Mecklenburg, Z. H. Zhou, E. Poirier, A. Dailly, H. Wang, Z. Wu, M. Cai, and Y. Lu, Mesoporous Metal and Metal Alloy Particles Synthesized by Aerosol-Assisted Confined Growth of Nanocrystals, Angew. Chem. Int. Ed., 51, 10546 (2012). https://doi.org/10.1002/anie.201204289
  3. F. Dai, J. Zai, R. Yi, M. L. Gordin, H. Sohn, S. Chen, and D. Wang, Bottom-up Synthesis of High Surface Area Mesoporous Crystalline Silicon and Evaluation of Its Hydrogen Evolution Performance, Nature Commun., 5, 3605 (2014). https://doi.org/10.1038/ncomms4605
  4. V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C. W. Wu, J. H. Kim, and Y. Yamauchi, Nanoarchitectures for Mesoporous Metals, Adv. Mater., 28, 993 (2016). https://doi.org/10.1002/adma.201502593
  5. Y. Ren, A. R. Armstrong, F. Jiao, and P. G. Bruce, Influence of Size on the Rate of Mesoporous Electrodes for Lithium Batteries, J. Am. Chem. Soc., 132, 996 (2010). https://doi.org/10.1021/ja905488x
  6. C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, and C. Sanchez, Aerosol Route to Functional Nanostructured Inorganic and Hybrid Porous Materials, Adv. Mater., 23, 599 (2011). https://doi.org/10.1002/adma.201001410
  7. H. Sohn, Q. Xiao, and Y. Lu, Porous nanostructured particle through an aerosol route, Aerosols: Properties, Sources and Management Practices (Nova Science Publishers, 2012) Chapter 1.
  8. H. Sohn, Porous Bimetallic (NixPt1-x) Alloy Mesocrystals within Carbon Framework as High-Performance Catalysts, The Korea Society of Industrial and Engineering Chemistry, Jeju, Korea (2018).
  9. H. Sohn, Z. Chen, Y. S. Jung, Q. Xiao, M. Cai, H. Wang, and Y. Lu, Robust lithium-ion anodes based on nanocomposites of iron oxide-carbonsilicate, J. Mater. Chem. A, 1, 4539 (2013). https://doi.org/10.1039/c2ta00443g
  10. H. Sohn, D. H. Kim, R. Yi, D. Tang, S. E. Lee, Y. S. Jung, and D. Wang, Semimicro-size Agglomerate Structured Silicon-Carbon Composite as an Anode Material for High Performance Lithium-Ion Batteries, J. Power Sources, 334, 128 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.096
  11. C. Lei, Z. Chen, H. Sohn, X. Wang, Z. Le, D. Weng, M. Shen, G. Wang, and Y. Lu, Better Lithium-ion Storage Materials Made Through Hierarchical Assemblies of Active Nanorods and Nanocrystals, J. Mater. Chem. A, 2, 17536 (2014). https://doi.org/10.1039/C4TA03715D
  12. H. Sohn, M. L. Gordin, T. Xu, S. Chen, D. Lv, J. Song, A. Manivannan, and D. Wang, Porous Spherical Carbon/Sulfur Nanocomposites by Aerosol-Assisted Synthesis: the Effect of Pore Structure and Morphology on Their Electrochemical Performance as Lithium-Sulfur Battery Cathodes, ACS Appl. Mater. Interfaces, 6, 7596 (2014). https://doi.org/10.1021/am404508t
  13. H. Sohn, M. L. Gordin, M. Regula, D. H. Kim, Y. S. Jung, J. Song, and D. Wang, Porous Spherical Polyacrylonitrile-Carbon Nanocomposite with High Loading of Sulfur for Li-S Batteries, J. Power Sources, 302, 70 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.013
  14. J. Song, M. L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, J. Lu, Y. Ren, Y. Duan, and D. Wang, Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Enables High-Performance Lithium-Sulfur Battery Cathodes, Angew. Chem. Int. Ed., 54, 4325 (2015). https://doi.org/10.1002/anie.201411109
  15. J. Song, Z. Yu, T. Xu, S. Chen, H. Sohn, M. Regula, and D. Wang, Flexible Freestanding Sandwich-structured Sulfur Cathodes with Superior Performance for Lithium-sulfur Batteries, J. Mater. Chem. A, 2, 8623 (2014). https://doi.org/10.1039/C4TA00742E