DOI QR코드

DOI QR Code

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Hybrids of Chitosan and Bamboo Charcoal/Silica

  • Li, Xiang Xu (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Cho, Ur Ryong (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • Received : 2018.12.17
  • Accepted : 2018.12.31
  • Published : 2019.03.31

Abstract

Chitosan-polyvinyl alcohol (PVA) -bamboo charcoal/silica (CS-PVA-BC/SI) hybrid fillers with compatibilized styrene-butadiene rubber (SBR) composites were fabricated by the interpenetrating polymer network (IPN) method. The structure and composition of the composite samples were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The viscoelastic behaviors of the rubber composites and their vulcanizates were explored using a rubber processing analyzer (RPA) in the rheometer, strain sweep and temperature sweep modes. The storage and loss moduli of SBR increased significantly with the incorporation of different hybrid fillers, which was attributed to the formation of an interphase between the hybrid fillers and rubber matrix, and the effective dispersion of the hybrid fillers. The mechanical properties (hardness, tensile strength, oxygen transmission rate, and swelling rate) of the composite samples were characterized in detail. From the results of the mechanical test, it was found that BC-CS-PVA0SBR had the best mechanical properties. Therefore, the BC-CS-PVA hybrid filler provided the best reinforcement effects for the SBR latex in this research.

Keywords

HKGMCJ_2019_v54n1_22_f0001.png 이미지

Figure 1. Formation mechanism of chitosan-PVA-filler interpenet-rating gel with formaldehyde crosslink agent.

HKGMCJ_2019_v54n1_22_f0002.png 이미지

Figure 2. SEM graphs for (a) CS-PVA gel, (b) neat SBR, (c) SI-SBR, (d) BC-SBR, (e) SI-CS-PVA-SBR, and (f) BC-CS-PVA-SBR.

HKGMCJ_2019_v54n1_22_f0003.png 이미지

Figure 3. FT-IR results of samples.

HKGMCJ_2019_v54n1_22_f0004.png 이미지

Figure 4. Torque versus time traces for different samples.

HKGMCJ_2019_v54n1_22_f0005.png 이미지

Figure 5. Tan δ of all the samples from dynamic strain sweep at a frequency of 60 cpm and at a temperature of 60°C.

HKGMCJ_2019_v54n1_22_f0006.png 이미지

Figure 6. Dynamic temperature sweep of G' from 60 to 160°C at 1 Hz and 1 degree strain.

HKGMCJ_2019_v54n1_22_f0007.png 이미지

Figure 7. Dynamic temperature sweep of G" from 60 to 160°C at 1 Hz and 1 degree strain.

HKGMCJ_2019_v54n1_22_f0008.png 이미지

Figure 8. Hardness values of all the samples.

HKGMCJ_2019_v54n1_22_f0009.png 이미지

Figure 9. The tensile strength results of all the samples.

HKGMCJ_2019_v54n1_22_f0010.png 이미지

Figure 10. The OTR test results of all the samples.

HKGMCJ_2019_v54n1_22_f0011.png 이미지

Figure 11. The swelling ratio test results of all the samples.

Table 1. Formulations of Test Sample Compounds.

HKGMCJ_2019_v54n1_22_t0001.png 이미지

References

  1. C. W. Lou, C. W. Lin, C. H. Lei, K. H. Su, C. H. Hsu, Z. H. Liu, and J. H. Lin, "PET/PP blend with bamboo charcoal to produce functional composites", J. Mater. Process. Tech., 192, 428 (2007). https://doi.org/10.1016/j.jmatprotec.2007.04.018
  2. Z. Hussain and S. Sahudin, "Preparation, characterisation and colloidal stability of chitosan-tripolyphosphate nanoparticles: optimisation of formulation and process parameters", J. Pharm. Pharm. Sci., 8, 297 (2016).
  3. M. Thanou, J. C. Verhoef, and H. E. Junging, "Oral drug absorption enhancement by chitosan and its derivatives", Adv. Drug. Deliver. Rev., 52, 117 (2001). https://doi.org/10.1016/S0169-409X(01)00231-9
  4. A. F. Kotze, H. L. LueBen, B. J. de Leeuw, J. C. Verhoef, and H. E. Junginger, "Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2)", J. Control. Release., 51, 35 (1998). https://doi.org/10.1016/S0168-3659(97)00154-5
  5. E. S. Costa Junior, E. F. Barbosa Stancioli, A. A. Mansur, W. L. Vasconcelos, and H. S. Mansur, "Preparation and charac-terization of chitosan/poly (vinyl alcohol) chemically crosslinked blends for biomedical applications", Carbohyd. Polym., 76, 472 (2009). https://doi.org/10.1016/j.carbpol.2008.11.015
  6. P. C. Srinivasa, M. N. Ramesh, K. R. Kumar, and R. N. Tharanthan, "Properties and sorption studies of chitosan-polyvinyl alcohol blend films" Carbohyd. Polym., 53, 431 (2003). https://doi.org/10.1016/S0144-8617(03)00105-X
  7. M. Schwartz, "Chitosan Based Gels and Hydrogels", CRC Press, Florida, 2008.
  8. E. D. Dannenberg, "The effects of surface chemical interactions on the properties of filler-reinforced rubbers", Rubber. Chem. Technol., 48, 410 (1975). https://doi.org/10.5254/1.3547460
  9. J. L. Keddie, "Film formation of latex", Mater. Sci. Eng. R., 21, 101 (1997). https://doi.org/10.1016/S0927-796X(97)00011-9
  10. A. F. Halasa, J. Prentis, B. Hsu, and C. Jasiunas, "High vinyl high styrene solution SBR", Polymer, 46, 4166 (2005). https://doi.org/10.1016/j.polymer.2005.02.063
  11. H. Ismail, S. Shuhelmy, and M. R. Edyham, "The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites", Eur. Polym. J., 38, 39 (2002). https://doi.org/10.1016/S0014-3057(01)00113-6
  12. P. L. The, Z. M. Ishak, A. S. Hashim, J. Karger Kocsis, and U. S. Ishiaku, "Effects of epoxidized natural rubber as a compatibilizer in melt compounded natural rubber-organoclay nanocomposites", Eur. Polym. J., 40, 2513 (2004). https://doi.org/10.1016/j.eurpolymj.2004.06.025
  13. M. Arroyo, M. A. Lopez Manchado, and B. Herrero, "Organo-montmorillonite as substitute of carbon black in natural rubber compounds", Polymer, 44, 2447 (2003). https://doi.org/10.1016/S0032-3861(03)00090-9
  14. R. E. Shadwick, "Elastic energy storage in tendons: mechanical differences related to function and age", J. Appl. Physiol., 68, 1033 (1990). https://doi.org/10.1152/jappl.1990.68.3.1033
  15. M. J. Wang, "Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates", Rubber. Chem. Technol., 71, 520 (1998). https://doi.org/10.5254/1.3538492
  16. Z. Li, W. Ren, H. Chen, L. Ye, and Y. Zhang, "Effect of liquid isoprene rubber on dynamic mechanical properties of emulsion polymerized styrene/butadiene rubber vulcanizates", Polym. Int., 61, 531 (2012). https://doi.org/10.1002/pi.3198
  17. M. Luo, X. Liao, S. Liao, and Y. Zhao, "Mechanical and dynamic mechanical properties of natural rubber blended with waste rubber powder modified by both microwave and sol-gel method", J. Polym. Sci., 129, 2313 (2013).
  18. J. Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf, and I. Jasiuk, "Experimental trends in polymer nanocomposites-a review", Mat. Sci. Eng. A Struct., 393, 1 (2005). https://doi.org/10.1016/j.msea.2004.09.044
  19. Y. Di, S. Iannace, E. D. Maio, and L. Nicolais, "Poly(lactic acid)/organoclay nanocomposites: thermal, rheological properties and foam processing", J. Polym. Sci. Pol. Phys., 43, 689 (2005).
  20. X. X. Li, J. H. Oh, S. H. Kang, S. H, Jang, D. H. Lee, and U. R, Cho, "Reinforcement Effects of Sulfonated Bamboo Charcoal-Chitosan (sBC-CS) Hybrid for Styrene-Butadiene Rubber Latex", Polymer (Korea), 41, 750 (2017). https://doi.org/10.7317/pk.2017.41.5.750
  21. X. X. Li and U. R. Cho, "Modified Silica with Cellulose/Starch by Gel-Adsorption Method as Reinforcing Materials for SBR Latex", Elastomers and Composites, 53, 6 (2018). https://doi.org/10.7473/EC.2018.53.1.6
  22. S. H. Jang, X. X. Li, and U. R. Cho, "Manufacture and Properties of SBR/Starch/Bamboo Charcoal Composites", Polymer Korea, 42, 29 (2018). https://doi.org/10.7317/pk.2018.42.1.29
  23. T. Serizawa, K. Wakita, and M. Akashi, "Rapid Deswelling of Porous Poly(N-isopropyl acrylamide) Hydrogels Prepared by Incorporation of Silica Particles", Macromolecules, 35, 10 (2002). https://doi.org/10.1021/ma011362+