DOI QR코드

DOI QR Code

Reinforcing Performance of Networked Silicas in Silica-filled Chloroprene Rubber Compounds

  • Received : 2019.01.30
  • Accepted : 2019.02.19
  • Published : 2019.03.31

Abstract

The physical properties of chloroprene rubber (CR) compounds reinforced with networked silicas were investigated by comparing them to those reinforced with conventional silica to observe the effect of the organic connection bonds combining silica particles on their cure, tensile, and aging performance. The introduction of networked silica to CR increase in silica content to 80 phr in rubber, while the content of conventional silica was limited to 60 phr. The CR compounds reinforced with networked silica showed higher resistance to combustion. The gradual increases in delta torque, Mooney viscosity, and modulus of silica-filled CR compounds with silica content were mainly attributed to the specific interaction between the chlorine atoms of CR and the hydroxyl groups of silica. The CR compounds reinforced with networked silica showed low compression set and heat build-up and maintained their high modulus even after thermal, oil, and ozone aging.

Keywords

HKGMCJ_2019_v54n1_40_f0001.png 이미지

Figure 2. Photos of rubber sheets of silica-filled CR compounds.

HKGMCJ_2019_v54n1_40_f0002.png 이미지

Figure 1. TG curves of silicas used.

HKGMCJ_2019_v54n1_40_f0003.png 이미지

Figure 3. SEM images of CR-MS1 compounds with different silica contents: (A) 20 phr, (B) 40 phr, (C) 60 phr, and (D) 80 phr. The images were obtained from the compounds after sputtering with plasma to remove soft rubber.

HKGMCJ_2019_v54n1_40_f0004.png 이미지

Figure 4. SEM images of CR-GR compounds with different silica contents: (A) 20 phr, (B) 40 phr, and (C) 60 phr. The images were obtained from the compounds after sputtering with plasma to remove soft rubber.

HKGMCJ_2019_v54n1_40_f0005.png 이미지

Figure 5. TG (A) and DTA (B) curves of CR compounds reinforced with different silicas of 60 phr recorded in nitrogen.

HKGMCJ_2019_v54n1_40_f0006.png 이미지

Figure 6. TG curves of CR-GR (A) and CR-MS3 (B) and DTA curves of CR-GR (C) and CR-MS3 (D) compounds recorded in air.

HKGMCJ_2019_v54n1_40_f0007.png 이미지

Figure 7. Rheocurves of CR-GR (A), CR-MS2 (B), and CR-MS3 (C) compounds with different silica contents.

HKGMCJ_2019_v54n1_40_f0008.png 이미지

Figure 8. Variations of (A) τmin and (B) Δτ of silica-filled CR compounds with their silica content.

HKGMCJ_2019_v54n1_40_f0009.png 이미지

Figure 9. Variations of (A) Mooney viscosity and (B) Payne effect of silica-filled CR compounds with their silica content.

HKGMCJ_2019_v54n1_40_f0010.png 이미지

Figure 10. Variations of (A) tear and (B) tensile strengths of silica-filled CR compounds with their silica content.

HKGMCJ_2019_v54n1_40_f0011.png 이미지

Figure 11. Variations of (A) M-200% and (B) E.B. of silica-filled CR compounds with their silica content.

HKGMCJ_2019_v54n1_40_f0012.png 이미지

Figure 12. Variations of (A) HBU and (B) compression set of silica-filled CR compounds with their silica content.

HKGMCJ_2019_v54n1_40_f0013.png 이미지

Figure 13. Changes in moduli of the CR compounds reinforced with 60 phr silica after (A) thermal, (B) oil, and (C) ozone aging.

HKGMCJ_2019_v54n1_40_f0014.png 이미지

Figure 14. Changes in tear and tensile strengths of CR compounds reinforced with 60 phr silica after (A) thermal, (B) oil, and (C) ozone aging.

Table 1. Chemical Compositions of Silica-Filled CR Compounds Prepared

HKGMCJ_2019_v54n1_40_t0001.png 이미지

References

  1. B. P. Kapgate, C. Das, A. Das, D. Basu, S. Wiessener, U. Reuter, and G. Heinrich, "Reinforced chloroprene rubber by in situ generated silica particles: Evidence of bound rubber on the silica surface", J. Appl. Polym. Sci., (2016). DOI: 10.1002/APP.43717.
  2. C. Siriwong, P. Sae-Oui, and C. Sirisinha, "Performance comparison of various surface modifying agents on properties of silica-filled chloroprene rubber", Rubber Chem. Technol., 90, 146 (2017). https://doi.org/10.5254/rct.16.83777
  3. I. K. Sung and C. Y. Park, "Fire resistance properties of chloroprene rubber containing inorganic flame retardant", Elast. Compos., 50, 279 (2015). https://doi.org/10.7473/EC.2015.50.4.279
  4. P. Zhang, G. Huang, L. Qu, Y. Nie, G. Weng, and J. Wu, "Strain-induced crystallization behavior of polychloroprene rubber", J. Appl. Polym. Sci., 121, 37 (2011). https://doi.org/10.1002/app.33530
  5. P. Y. Le Gac, V. Le Saux, M. Paris, and Y. Marco, "Ageing mechanism and mechanical degradation behaviour of polychloroprene rubber in a marine environment: Comparison of accelerated ageing and long term exposure", Polym. Degrad. Stab., 97, 288 (2012). https://doi.org/10.1016/j.polymdegradstab.2011.12.015
  6. V. Le Saux, P. Y. Le Gac, Y. Marco, and S. Calloch, "Limit in the validity of Arrhenius predictions for field ageing of silica filled polychloroprene in a marine environment", Polym. Degrad. Stab., 99, 254 (2014). https://doi.org/10.1016/j.polymdegradstab.2013.10.027
  7. S. T. Tchalla, P. Y. Le Gac, R. Maurin, and R. Creac'hcadec, "Polychloroprene behaviour in a marine environment: Role of silica fillers", Polym. Degrad. Stab., 139, 28 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.03.011
  8. P. Sae-oui, C. Sirisinha, and K. Hatthapanit, "Effect of blend ratio on aging, oil and ozone resistance of silica-filled chloroprene rubber/natural rubber (CR/NR) blends", eXPRESS Polym. Lett., 1, 8 (2007). https://doi.org/10.3144/expresspolymlett.2007.3
  9. D. Kim, Y. K. Lee, S. S. Choi, and T. H. Kim, "Effects of filler types and compositions on the physical properties of chloroprene rubber", J. Korean Inst. Rubber Ind., 32, 295 (1997).
  10. N. Hewitt, "Compounding Precipitated Silica in Elastomers: Theory and Practice", Chap. 6, William Andrew Publishing, Norwich, New York, 2007.
  11. M. G. Maya, G. C. Soney, J. Thomasukutty, K. Lekshmi, and T. Sabu, "Development of a flexible and conductive elastomeric composite based on chloroprene rubber", Polymer Test., 65, 256 (2018). https://doi.org/10.1016/j.polymertesting.2017.12.006
  12. M.-H. Yeh, W.-S. Hwang, and L.-R. Cheng, "Microstructure and mechanical properties of neoprene-montmorillonite nanocomposites", Appl. Surf. Sci., 253, 4777 (2007). https://doi.org/10.1016/j.apsusc.2006.10.064
  13. A. Das, F. R. Costa, U. Wagenknecht, and G. Heinrich, "Nanocomposites based on chloroprene rubber: Effect of chemical nature and organic modification of nanoclay on the vulcanizate properties", Eur. Polym. J., 44, 3456 (2008). https://doi.org/10.1016/j.eurpolymj.2008.08.025
  14. Y. Chokanandsombat and C. Sirisinha, "MgO and ZnO as reinforcing fillers in cured polychloroprene rubber", J. Appl. Polym. Sci., (2013), DOI:10.1002/APP.38579.
  15. P. Sae-oui, C. Sirisinha, U. Thepsuwan, and K. Hatthapanit, "Dependence of mechanical and aging properties of chloroprene rubber on silica and ethylene thiourea loadings", Eur. Polym. J., 43, 185 (2007). https://doi.org/10.1016/j.eurpolymj.2006.10.015
  16. B. P. Kapgate and C. Das, "Reinforcing efficiency and compatibilizing effect of sol-gel derived in situ silica for natural rubber/chloroprene rubber blends", RSC Adv., 4, 58816 (2014). https://doi.org/10.1039/C4RA09415H
  17. C. Siriwong, P. Sae-Oui, and C. Sirisinha, "Comparison of coupling effectiveness among amino-, chloro-, and mercapto silanes in chloroprene rubber", Polymer Test., 38, 64 (2014). https://doi.org/10.1016/j.polymertesting.2014.07.003
  18. W. Feng, Z. Tang, P. Weng, and B. Guo, "Correlation of filler networking with reinforcement and dynamic properties of SSBR/carbon black/silica composites", Rubber Chem. Technol., 86, 676 (2015).
  19. S. Mihara, R. N. Datta, and J. W. M. Noordermeer, "Flocculation in silica reinforced rubber compounds", Rubber Chem. Technol., 82, 524 (2009). https://doi.org/10.5254/1.3548262
  20. C. G. Robertson, C. J. Lin, R. B. Bogoslovov, M. Rackaitis, P. Sadhukhan, J. D. Quinn, and C. M. Roland, "Flocculation, Reinforcement, and glass transition effects in silica-filled styrene-butadiene rubber", Rubber Chem. Technol., 84, 507 (2011). https://doi.org/10.5254/1.3601885
  21. G. Seo, S. Kaang, C. K. Hong, D. J. Jung, C. S. Ryu, and D. H. Lee, "Preparation of novel fillers, named networked silicas, and their effects of reinforcement on rubber compounds", Polym. Int. 57, 1101 (2008). https://doi.org/10.1002/pi.2449
  22. G. Seo, S. M. Park, K. Ha, K. T. Choi, C. K. Hong, and S. Kaang, "Effectively reinforcing roles of the networked silica prepared using 3,3'-bis(triethoxysilylpropyl)tetrasulfide in the physical properties of SBR compounds", J. Mater. Sci., 45, 1897 (2010). https://doi.org/10.1007/s10853-009-4175-3
  23. C. Ryu, J.-K. Yang, W. Park, Y. Seo, S. J. Kim, D. Kim, S. Park, and Gon Seo, "Reinforcement of styrene-butadiene/polybutadiene rubber compounds by modified silicas with different surface and networked states," J. Appl. Polym. Sci., (2017), DOI:10.1002/APP.44893.
  24. T. Sunada, Y. Abe, and N. Kobayashi, "Sulfur-modified chloroprene rubber composition and molded body," US patent 9 475 895 (2016).
  25. H. Desai, K. G. Hendrikse, and C. D. Woolard, "Vulcanization of polychloroprene rubber. I. A revised cationic mechanism for ZnO crosslinking", J. Appl. Polym. Sci., 105, 865 ((2007). https://doi.org/10.1002/app.23904
  26. B. J. Ramires and V. Gupta, "High tear strength polyuria foams with low compression set and shrinkage properties at elevated temperatures", Int. J. Mech. Sci., 150, 29 (2019). https://doi.org/10.1016/j.ijmecsci.2018.10.014
  27. T. Ha-Anh and T. Vu-Khanh, "Prediction of mechanical properties of polychloroprene during thermo-oxidation aging," Polymer Test., 24, 775 (2005). https://doi.org/10.1016/j.polymertesting.2005.03.016
  28. E. L. G. Denardin, D. Samios, P. R. Janissek, and G. P. de Souza, "Thermal degradation of aged chloroprene rubber studied by thermogravimetric analysis", Rubber Chem. Technol., 74, 622 (2001). https://doi.org/10.5254/1.3544962
  29. I. C. Choi, W.-K. Lee, and C. Y. Park, "Cure characteristics, mechanical property and ozone resistance of natural rubber/bromo isobutylene isoprene rubber blend", Elast Compos., 53, 168 (2018). https://doi.org/10.7473/EC.2018.53.3.168
  30. J.-K. Yang, W. Park, C. Ryu, S. J. Kim, D. Kim, J.-H. Kim, and G. Seo, "Effects of coupling and dispersion agents on the properties of styrene-butadiene rubber/butadiene rubber compounds reinforced with different silica contents", Elast. Compos., 53, 109 (2018). https://doi.org/10.7473/EC.2018.53.3.109
  31. Mettler and Toledo, "TGA of chloroprene rubber," http://www.mt.com.. 2019. 1. 17.
  32. N. Rattanasom, P. Kueseng, and C. Deeprasertkul, "Improvement of the mechanical and thermal properties of silica-filled polychloroprene vulcanizates prepared from latex system", J. Appl. Polym. Sci., 124, 2657 (2012). https://doi.org/10.1002/app.34900
  33. C. J. Lin, T. E. Hogan, and W. L. Hergenrother, "On the filler flocculation in silica and carbon black filled rubbers: Part II. Filler flocculation and polymer-filler interaction", Rubber Chem. Technol., 77, 90 (2004). https://doi.org/10.5254/1.3547816
  34. K. Sengloyluan, W. K. Dierkes, J. W. M. Noordermeer, and K. Sahakaro, "Reinforcement efficiency of silica in dependence of different types of silane coupling agents in natural rubber-based tire compounds", KGK, 44 (2016).
  35. S. N. Lawandy and M. T. Wassef, "Long-term oil-seal embrittlement", J. Appl. Polym. Sci., 37, 567 (1989). https://doi.org/10.1002/app.1989.070370221
  36. J. Oh and J. H. Kim, "Prediction of long-term creep deflection of seismic isolation bearings", J. Vibroeng., 19, 355 (2017). https://doi.org/10.21595/jve.2016.16798