DOI QR코드

DOI QR Code

Characteristics of a Titanium-oxide Layer Prepared by Plasma Electrolytic Oxidation for Hydrogen-ion Sensing

  • Lee, Do Kyung (Department of Advanced Material Science and Chemical Engineering, Daegu Catholic University) ;
  • Hwang, Deok Rok (Department of Advanced Material Science and Chemical Engineering, Daegu Catholic University) ;
  • Sohn, Young-Soo (Department of Biomedical Engineering, Daegu Catholic University)
  • Received : 2019.03.19
  • Accepted : 2019.03.26
  • Published : 2019.03.31

Abstract

The characteristics of a titanium oxide layer prepared using a plasma electrolytic oxidation (PEO) process were investigated, using an extended gate ion sensitive field effect transistor (EG-ISFET) to confirm the layer's capability to react with hydrogen ions. The surface morphology and element distribution of the PEO-processed titanium oxide were observed and analyzed using field-emission scanning-electron microscopy (FE-SEM) and energy-distribution spectroscopy (EDS). The titanium oxide prepared by the PEO process was utilized as a hydrogen-ion sensing membrane and an extended gate insulator. A commercially available n-channel enhancement MOS-FET (metal-oxide-semiconductor FET) played a role as a transducer. The responses of the PEO-processed titanium oxide to different pH solutions were analyzed. The output drain current was linearly related to the pH solutions in the range of pH 4 to pH 12. It was confirmed that the titanium-oxide layer prepared by the PEO process could feasibly be used as a hydrogen-ion-sensing membrane for EGFET measurements.

Keywords

HSSHBT_2019_v28n2_76_f0002.png 이미지

Fig. 3. Cross section of the SEM image of the specimen.

HSSHBT_2019_v28n2_76_f0003.png 이미지

Fig. 4. EDS spectrum of the PEO coating.

HSSHBT_2019_v28n2_76_f0004.png 이미지

Fig. 5. Id-Vd graphs of (a) the commercial n-MOSFET(2N7008) and (b) the EGFET with different pH values.

HSSHBT_2019_v28n2_76_f0005.png 이미지

Fig. 1. (a) Schematic diagram of electrical measurement setup; (b) reference electrode, specimens, and corrosion-test cell.

HSSHBT_2019_v28n2_76_f0006.png 이미지

Fig. 2. FE-SEM micrograph of the surface of the PEO coating. (a) 1k magnified image; (b) 30k magnified image.

HSSHBT_2019_v28n2_76_f0007.png 이미지

Fig. 6. (a) pH versus Id in the saturated region; (b) linear regression of the relation between Id and pH from 4 to 12.

Table 1. Electrolyte composition

HSSHBT_2019_v28n2_76_t0001.png 이미지

Table 2. EDS analysis of the PEO layer.

HSSHBT_2019_v28n2_76_t0003.png 이미지

References

  1. P. Bergveld, "Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements," IEEE Trans. Biomed. Eng., Vol. BME-17, No. 1, pp. 70-71, 1970. https://doi.org/10.1109/TBME.1970.4502688
  2. B.-K. Sohn and C.-S. Kim, "A new pH-ISFET based dissolved oxygen sensor by employing electrolysis of oxygen," Sens. Actuators, B, Vol. 34, No. 1-3, pp. 435-440, 1996. https://doi.org/10.1016/S0925-4005(97)80017-2
  3. B.-K. Sohn, B.-W. Cho, C.-S. Kim, and D.-H. Kwon, "ISFET glucose and sucrose sensors by using platinum electrode and photo-crosslinkable polymers," Sens. Actuators, B, Vol. 41, No. 1-3, pp. 7-11, 1997. https://doi.org/10.1016/S0925-4005(97)80271-7
  4. L.-S. Park, Y.-J. Hur, and B.-K. Sohn, "Effect of membrane structure on the performance of field-effect transistor potassium-sensitive sensor," Sens. Actuators, A, Vol. 57, No. 3, pp. 239-243, 1996. https://doi.org/10.1016/S0924-4247(97)80120-3
  5. P. Bergveld, "Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years," Sens. Actuators, B, Vol. 88, No. 1, pp. 1-20, 2003. https://doi.org/10.1016/S0925-4005(02)00301-5
  6. M. J. Schoning, and A. Poghossian, "Recent advances in biologically sensitive field-effect transistors (BioFETs)," Analyst, Vol. 127, No. 9, pp. 1137-1151, 2002. https://doi.org/10.1039/B204444G
  7. V. Pachauri and S. Ingebrandt, "Biologically sensitive field-effect transistors: from ISFETs to NanoFETs," Essays Biochem., Vol. 60, No. 1, pp. 81-90, 2016. https://doi.org/10.1042/EBC20150009
  8. M. Kaisti, "Detection principles of biological and chemical FET sensors," Biosens. Bioelectron., Vol. 98, pp. 437-448, 2017. https://doi.org/10.1016/j.bios.2017.07.010
  9. K. B. Parizi, X. Xu, A. Pal, X. Hu, and H. S. P. Wong, "ISFET pH Sensitivity: Counter-Ions Play a Key Role," Sci. Rep., Vol. 7, pp. 41305(1)-41305(10), 2017. https://doi.org/10.1038/srep41305
  10. S.-K. Lee, Y.-S. Sohn, and S.-Y. Choi, "Fabrication and characteristics of MOSFET type protein sensor using extended gate," J. Sens. Sci. Techol., Vol. 16, No. 2, pp. 104-109, 2007. https://doi.org/10.5369/JSST.2007.16.2.104
  11. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, Vol. 293, No. 5533, pp. 1289-1292, 2001. https://doi.org/10.1126/science.1062711
  12. E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, "Label-free immunodetection with CMOS-compatible semiconducting nanowires," Nature, Vol. 445, pp. 519-522, 2007. https://doi.org/10.1038/nature05498
  13. S. Xu, C. Zhang, S. Jiang, G. Hu, X. Li, Y. Zou, H. Liu, J. Li, Z. Li, X. Wang, M. Li, and J. Wang, "Graphene foam field-effect transistor for ultra-sensitive label-free detection of ATP," Sens. Actuators, B, Vol. 284, pp. 125-133, 2019. https://doi.org/10.1016/j.snb.2018.12.129
  14. X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K. U. Kainer, and M. L. Zheludkevich, "Plasma electrolytic oxidation coatings with particle additions - A review," Surf. Coat. Technol., Vol. 307-C, pp. 1165-1182, 2016. https://doi.org/10.1016/j.surfcoat.2016.08.055
  15. Z. Yao, Y. Jiang, F. Jia, Z. Jiang, and F. Wang, "Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti-6Al-4V alloy," Appl. Surf. Sci., Vol. 254, No. 13, pp. 4084-4091, 2008. https://doi.org/10.1016/j.apsusc.2007.12.062
  16. X. Lu, C. Blawert, K. U. Kainer, T. Zhang, F. Wang, and M. L. Zheludkevich, "Influence of particle additions on corrosion and wear resistance of plasma electrolytic oxidation coatings on Mg alloy," Surf. Coat. Technol., Vol. 352, pp. 1-14, 2018. https://doi.org/10.1016/j.surfcoat.2018.08.003
  17. A. L. Yerokhin, X. Nie, A. Leyland, and A. Matthews, "Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy," Surf. Coat. Technol., Vol. 130, No. 2-3, pp. 195-206, 2000. https://doi.org/10.1016/S0257-8972(00)00719-2
  18. K. Gangwar, and M. Ramulu, "Friction stir welding of titanium alloys: A review," Mater. Des., Vol. 141, pp. 230-255, 2018. https://doi.org/10.1016/j.matdes.2017.12.033
  19. S. Aliasghari, P. Skeldon, and G.E. Thompson, "Plasma electrolytic oxidation of titanium in a phosphate/silicate-electrolyte and tribological performance of the coatings," Appl. Surf. Sci., Vol. 316, pp. 463-476, 2014. https://doi.org/10.1016/j.apsusc.2014.08.037
  20. R. R. Boyer, "An overview on the use of titanium in the aerospace industry," Mater. Sci. Eng., A, Vol. 213, No. 1-2, pp. 103-114, 1996. https://doi.org/10.1016/0921-5093(96)10233-1
  21. W. Bunjongpru, A. Sungthong, S. Porntheeraphat, Y. Rayanasukha, A. Pankiew, W. Jeamsaksiri, A. Srisuwan, W. Chaisriratanakul, E. Chaowicharat, N. Klunngien, C. Hruanun, A. Poyai, and J. Nukeaw, "Very low drift and high sensitivity of nanocrystal-TiO2 sensing membrane on pH-ISFET fabricated by CMOS compatible process," Appl. Surf. Sci., Vol. 267, pp. 206-211, 2013. https://doi.org/10.1016/j.apsusc.2012.10.176
  22. B. G. Streetman, and S. K. Banerjee, Solid State Electronic Devices, 6th Ed., Pearson Prentice Hall, Upper Saddle River, NJ, pp. 283-285, 2006.