DOI QR코드

DOI QR Code

Roles of ginsenosides in inflammasome activation

  • Yi, Young-Su (Department of Pharmaceutical Engineering, Cheongju University)
  • Received : 2017.10.14
  • Accepted : 2017.11.16
  • Published : 2019.04.15

Abstract

Inflammation is an innate immune response that protects the body from pathogens, toxins, and other dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2, and cysteine aspartate-specific protease (caspase)-4/5/11 recognize various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble protein complexes called "inflammasomes." These complexes induce inflammatory responses by activating a downstream effector, caspase-1, leading to gasdermin D-mediated pyroptosis and the secretion of proinflammatory cytokines, such as interleukin $(IL)-1{\beta}$ and IL-18. Ginsenosides are natural steroid glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have been identified, and their abilities to regulate inflammatory responses have been evaluated. These studies have suggested a link between ginsenosides and inflammasome activation in inflammatory responses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5, and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes. Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of $IL-1{\beta}$ and IL-18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-mediated antiinflammatory actions. This relationship also has applications regarding the development of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be used to prevent and treat inflammatory diseases.

Keywords

References

  1. Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  2. Yi YS. Folate receptor-targeted diagnostics and therapeutics for inflammatory diseases. Immune Netw 2016;16:337-43. https://doi.org/10.4110/in.2016.16.6.337
  3. Kayama H, Nishimura J, Takeda K. Regulation of intestinal homeostasis by innate immune cells. Immune Netw 2013;13:227-34. https://doi.org/10.4110/in.2013.13.6.227
  4. Jin HS, Suh HW, Kim SJ, Jo EK. Mitochondrial control of innate immunity and inflammation. Immune Netw 2017;17:77-88. https://doi.org/10.4110/in.2017.17.2.77
  5. Chen G, Shaw MH, Kim YG, Nunez G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 2009;4:365-98. https://doi.org/10.1146/annurev.pathol.4.110807.092239
  6. Kang TJ, Chae GT. The role of intracellular receptor NODs for cytokine production by macrophages infected with Mycobacterium leprae. Immune Netw 2011;11:424-7. https://doi.org/10.4110/in.2011.11.6.424
  7. Kedzierski L, Montgomery J, Curtis J, Handman E. Leucine-rich repeats in hostpathogen interactions. Arch Immunol Ther Exp (Warsz) 2004;52:104-12.
  8. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 2017;277:61-75. https://doi.org/10.1111/imr.12534
  9. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell 2014;157:1013-22. https://doi.org/10.1016/j.cell.2014.04.007
  10. Yi YS. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology 2017;152:207-17. https://doi.org/10.1111/imm.12787
  11. Ding J, Shao F. SnapShot: the noncanonical inflammasome. Cell 2017;168. 544-544 e541. https://doi.org/10.1016/j.cell.2017.01.008
  12. Yi YS, Son YJ, Ryou C, Sung GH, Kim JH, Cho JY. Functional roles of Syk in macrophage-mediated inflammatory responses. Mediat Inflamm 2014;2014:270302. https://doi.org/10.1155/2014/270302
  13. Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 2009;9:465-79. https://doi.org/10.1038/nri2569
  14. Areschoug T, Gordon S. Scavenger receptors: role in innate immunity and microbial pathogenesis. Cell Microbiol 2009;11:1160-9. https://doi.org/10.1111/j.1462-5822.2009.01326.x
  15. Yang Y, Kim SC, Yu T, Yi YS, Rhee MH, Sung GH, Yoo BC, Cho JY. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediat Inflamm 2014;2014:352371.
  16. Yu T, Yi YS, Yang Y, Oh J, Jeong D, Cho JY. The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Mediat Inflamm 2012;2012:979105.
  17. Byeon SE, Yi YS, Oh J, Yoo BC, Hong S, Cho JY. The role of Src kinase in macrophage-mediated inflammatory responses. Mediat Inflamm 2012;2012:512926.
  18. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 2016;16:407-20. https://doi.org/10.1038/nri.2016.58
  19. Sharma D, Kanneganti TD. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J Cell Biol 2016;213:617-29. https://doi.org/10.1083/jcb.201602089
  20. Hong BN, Ji MG, Kang TH. The efficacy of red ginseng in type 1 and type 2 diabetes in animals. Evid Based Complement Alternat Med 2013;2013:593181.
  21. Ernst E. Complementary/alternative medicine for hypertension: a mini-review. Wien Med Wochenschr 2005;155:386-91. https://doi.org/10.1007/s10354-005-0205-1
  22. Jeong CS. Effect of butanol fraction of Panax ginseng head on gastric lesion and ulcer. Arch Pharm Res 2002;25:61-6. https://doi.org/10.1007/BF02975263
  23. Rastogi V, Santiago-Moreno J, Dore S. Ginseng: a promising neuroprotective strategy in stroke. Front Cell Neurosci 2014;8:457. https://doi.org/10.3389/fncel.2014.00457
  24. Totsch SK, Waite ME, Sorge RE. Dietary influence on pain via the immune system. Prog Mol Biol Transl Sci 2015;131:435-69. https://doi.org/10.1016/bs.pmbts.2014.11.013
  25. Hofseth LJ, Wargovich MJ. Inflammation, cancer, and targets of ginseng. J Nutr 2007;137:183S-5S. https://doi.org/10.1093/jn/137.1.183S
  26. Hasegawa H. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci 2004;95:153-7. https://doi.org/10.1254/jphs.FMJ04001X4
  27. Yayeh T, Jung KH, Jeong HY, Park JH, Song YB, Kwak YS, Kang HS, Cho JY, Oh JW, Kim SK, et al. Korean red ginseng saponin fraction downregulates proinflammatory mediators in LPS stimulated RAW264.7 cells and protects mice against endotoxic shock. J Ginseng Res 2012;36:263-9. https://doi.org/10.5142/jgr.2012.36.3.263
  28. Wakabayashi C, Murakami K, Hasegawa H, Murata J, Saiki I. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem Biophys Res Commun 1998;246: 725-30. https://doi.org/10.1006/bbrc.1998.8690
  29. Qi LW, Wang CZ, Yuan CS. Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 2011;72:689-99. https://doi.org/10.1016/j.phytochem.2011.02.012
  30. Yu T, Rhee MH, Lee J, Kim SH, Yang Y, Kim HG, Kim Y, Kim C, Kwak YS, Kim JH, et al. Ginsenoside Rc from Korean Red Ginseng (Panax ginseng C.A. Meyer) attenuates inflammatory symptoms of gastritis, hepatitis and arthritis. Am J Chin Med 2016;44:595-615. https://doi.org/10.1142/S0192415X16500336
  31. Kim MY, Cho JY. 20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages. J Ginseng Res 2013;37:293-9. https://doi.org/10.5142/jgr.2013.37.293
  32. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002;10:417-26. https://doi.org/10.1016/S1097-2765(02)00599-3
  33. Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 2006;38:240-4. https://doi.org/10.1038/ng1724
  34. Kovarova M, Hesker PR, Jania L, Nguyen M, Snouwaert JN, Xiang Z, Lommatzsch SE, Huang MT, Ting JP, Koller BH. NLRP1-dependent pyroptosis leads to acute lung injury and morbidity in mice. J Immunol 2012;189:2006-16. https://doi.org/10.4049/jimmunol.1201065
  35. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol 2013;13:397-411. https://doi.org/10.1038/nri3452
  36. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 2004;430:213-8. https://doi.org/10.1038/nature02664
  37. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 2006;7:569-75. https://doi.org/10.1038/ni1344
  38. Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A, et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 2006;7:576-82. https://doi.org/10.1038/ni1346
  39. Zhao Y, Shao F. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol Rev 2015;265: 85-102. https://doi.org/10.1111/imr.12293
  40. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 2010;107:3076-80. https://doi.org/10.1073/pnas.0913087107
  41. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011;477:596-600. https://doi.org/10.1038/nature10510
  42. Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 2008;452:103-7. https://doi.org/10.1038/nature06664
  43. Alnemri ES. Sensing cytoplasmic danger signals by the inflammasome. J Clin Immunol 2010;30:512-9. https://doi.org/10.1007/s10875-010-9419-0
  44. Wang B, Yin Q. AIM2 inflammasome activation and regulation: a structural perspective. J Struct Biol 2017.
  45. Man SM, Karki R, Kanneganti TD. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur J Immunol 2016;46:269-80. https://doi.org/10.1002/eji.201545839
  46. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, et al. Non-canonical inflammasome activation targets caspase-11. Nature 2011;479:117-21. https://doi.org/10.1038/nature10558
  47. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, Monack DM. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 2012;490:288-91. https://doi.org/10.1038/nature11419
  48. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 2013;341:1250-3. https://doi.org/10.1126/science.1240988
  49. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszynski A, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 2013;341:1246-9. https://doi.org/10.1126/science.1240248
  50. Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, Leong JM, Fitzgerald KA. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 2012;150:606-19. https://doi.org/10.1016/j.cell.2012.07.007
  51. Aachoui Y, Leaf IA, Hagar JA, Fontana MF, Campos CG, Zak DE, Tan MH, Cotter PA, Vance RE, Aderem A, et al. Caspase-11 protects against bacteria that escape the vacuole. Science 2013;339:975-8. https://doi.org/10.1126/science.1230751
  52. Case CL, Kohler LJ, Lima JB, Strowig T, de Zoete MR, Flavell RA, Zamboni DS, Roy CR. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proc Natl Acad Sci USA 2013;110:1851-6. https://doi.org/10.1073/pnas.1211521110
  53. Casson CN, Copenhaver AM, Zwack EE, Nguyen HT, Strowig T, Javdan B, Bradley WP, Fung TC, Flavell RA, Brodsky IE, et al. Caspase-11 activation in response to bacterial secretion systems that access the host cytosol. PLoS Pathog 2013;9:e1003400. https://doi.org/10.1371/journal.ppat.1003400
  54. Gurung P, Malireddi RK, Anand PK, Demon D, Vande Walle L, Liu Z, Vogel P, Lamkanfi M, Kanneganti TD. Toll or interleukin-1 receptor (TIR) domaincontaining adaptor inducing interferon-beta (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J Biol Chem 2012;287:34474-83. https://doi.org/10.1074/jbc.M112.401406
  55. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014;514:187-92. https://doi.org/10.1038/nature13683
  56. Vigano E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun 2015;6:8761. https://doi.org/10.1038/ncomms9761
  57. Casson CN, Yu J, Reyes VM, Taschuk FO, Yadav A, Copenhaver AM, Nguyen HT, Collman RG, Shin S. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. Proc Natl Acad Sci USA 2015;112:6688-93. https://doi.org/10.1073/pnas.1421699112
  58. Yang J, Zhao Y, Shao F. Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Curr Opin Immunol 2015;32:78-83. https://doi.org/10.1016/j.coi.2015.01.007
  59. Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259-74.
  60. Wang T, Guo R, Zhou G, Zhou X, Kou Z, Sui F, Li C, Tang L, Wang Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: a review. J Ethnopharmacol 2016;188:234-58. https://doi.org/10.1016/j.jep.2016.05.005
  61. Lee DC, Lau AS. Effects of Panax ginseng on tumor necrosis factor-alphamediated inflammation: a mini-review. Molecules 2011;16:2802-16. https://doi.org/10.3390/molecules16042802
  62. Baek KS, Yi YS, Son YJ, Yoo S, Sung NY, Kim Y, Hong S, Aravinthan A, Kim JH, Cho JY. In vitro and in vivo anti-inflammatory activities of Korean Red Ginseng-derived components. J Ginseng Res 2016;40:437-44. https://doi.org/10.1016/j.jgr.2016.08.003
  63. Zhang D, Yasuda T, Yu Y, Zheng P, Kawabata T, Ma Y, Okada S. Ginseng extract scavenges hydroxyl radical and protects unsaturated fatty acids from decomposition caused by iron-mediated lipid peroxidation. Free Radic Biol Med 1996;20:145-50. https://doi.org/10.1016/0891-5849(95)02020-9
  64. Park HY, Lee SH, Lee KS, Yoon HK, Yoo YC, Lee J, Choi JE, Kim PH, Park SR. Ginsenoside Rg1 and 20(S)-Rg3 induce IgA production by Mouse B cells. Immune Netw 2015;15:331-6. https://doi.org/10.4110/in.2015.15.6.331
  65. Baek KS, Yi YS, Son YJ, Jeong D, Sung NY, Aravinthan A, Kim JH, Cho JY. Comparison of anticancer activities of Korean red ginseng-derived fractions. J Ginseng Res 2017;41:386-91. https://doi.org/10.1016/j.jgr.2016.11.001
  66. Kim J, Ahn H, Han BC, Lee SH, Cho YW, Kim CH, Hong EJ, An BS, Jeung EB, Lee GS. Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 2014;158:143-50. https://doi.org/10.1016/j.imlet.2013.12.017
  67. Sun M, Ye Y, Xiao L, Duan X, Zhang Y, Zhang H. Anticancer effects of ginsenoside Rg3 (Review). Int J Mol Med 2017.
  68. Yoon SJ, Park JY, Choi S, Lee JB, Jung H, Kim TD, Yoon SR, Choi I, Shim S, Park YJ. Ginsenoside Rg3 regulates S-nitrosylation of the NLRP3 inflammasome via suppression of iNOS. Biochem Biophys Res Commun 2015;463:1184-9. https://doi.org/10.1016/j.bbrc.2015.06.080
  69. Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling in disease. Physiol Rev 2006;86:1133-49. https://doi.org/10.1152/physrev.00015.2006
  70. Ringseis R, Eder K, Mooren FC, Kruger K. Metabolic signals and innate immune activation in obesity and exercise. Exerc Immunol Rev 2015;21:58-68.
  71. Hong H, Cui CH, Kim JK, Jin FX, Kim SC, Im WT. Enzymatic biotransformation of Ginsenoside Rb1 and Gypenoside XVII into Ginsenosides Rd and F2 by recombinant beta-glucosidase from Flavobacterium johnsoniae. J Ginseng Res 2012;36:418-24. https://doi.org/10.5142/jgr.2012.36.4.418
  72. Chen W, Wang J, Luo Y, Wang T, Li X, Li A, Li J, Liu K, Liu B. Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 inflammasome activation in adipose tissue. J Ginseng Res 2016;40: 351-8. https://doi.org/10.1016/j.jgr.2015.11.002
  73. Dedoussis GV, Kaliora AC, Panagiotakos DB. Genes, diet and type 2 diabetes mellitus: a review. Rev Diabet Stud 2007;4:13-24. https://doi.org/10.1900/RDS.2007.4.13
  74. He H, Xu J, Xu Y, Zhang C, Wang H, He Y, Wang T, Yuan D. Cardioprotective effects of saponins from Panax japonicus on acute myocardial ischemia against oxidative stress-triggered damage and cardiac cell death in rats. J Ethnopharmacol 2012;140:73-82. https://doi.org/10.1016/j.jep.2011.12.024
  75. Tang HF, Yi YH, Wang ZZ, Hu WJ, Li YQ. Studies on the triterpenoid saponins of the root bark of Aralia taibaiensis. Yao Xue Xue Bao 1996;31:517-23.
  76. Yuan C, Liu C, Wang T, He Y, Zhou Z, Dun Y, Zhao H, Ren D, Wang J, Zhang C, et al. Chikusetsu saponin IVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-kappaB signaling. Oncotarget 2017;8:31023-40. https://doi.org/10.18632/oncotarget.16052
  77. Li W, Yan MH, Liu Y, Liu Z, Wang Z, Chen C, Zhang J, Sun YS. Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. Nutrients 2016;8.
  78. Xiao N, Yang LL, Yang YL, Liu LW, Li J, Liu B, Liu K, Qi LW, Li P. Ginsenoside Rg5 inhibits succinate-associated lipolysis in adipose tissue and prevents muscle insulin resistance. Front Pharmacol 2017;8:43.
  79. Zhou L, Zheng Y, Li Z, Bao L, Dou Y, Tang Y, Zhang J, Zhou J, Liu Y, Jia Y, et al. Compound K attenuates the development of atherosclerosis in ApoE(-/-) mice via LXRalpha activation. Int J Mol Sci 2016:17.
  80. Tang YY, Guo WX, Lu ZF, Cheng MH, Shen YX, Zhang YZ. Ginsenoside Rg1 promotes the migration of olfactory ensheathing cells via the PI3K/Akt pathway to repair rat spinal cord injury. Biol Pharm Bull 2017;40:1630-7. https://doi.org/10.1248/bpb.b16-00896
  81. Zhang Y, Hu W, Zhang B, Yin Y, Zhang J, Huang D, Huang R, Li W. Ginsenoside Rg1 protects against neuronal degeneration induced by chronic dexamethasone treatment by inhibiting NLRP-1 inflammasomes in mice. Int J Mol Med 2017.

Cited by

  1. Stereoselective Anti-Cancer Activities of Ginsenoside Rg3 on Triple Negative Breast Cancer Cell Models vol.12, pp.3, 2019, https://doi.org/10.3390/ph12030117
  2. Reversal of Epithelial–Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids vol.11, pp.12, 2019, https://doi.org/10.3390/cancers11121841
  3. Anticancer and immunomodulatory activity of egg proteins and peptides: a review vol.98, pp.12, 2019, https://doi.org/10.3382/ps/pez381
  4. Purification and Characterization of a Novel Antifungal Flagellin Protein from Endophyte Bacillus methylotrophicus NJ13 against Ilyonectria robusta vol.7, pp.12, 2019, https://doi.org/10.3390/microorganisms7120605
  5. Functional crosstalk between non‐canonical caspase‐11 and canonical NLRP3 inflammasomes during infection‐mediated inflammation vol.159, pp.2, 2020, https://doi.org/10.1111/imm.13134
  6. The effects of ginsenosides on platelet aggregation and vascular intima in the treatment of cardiovascular diseases: From molecular mechanisms to clinical applications vol.159, 2020, https://doi.org/10.1016/j.phrs.2020.105031
  7. Panax quinquefolius (North American Ginseng) Polysaccharides as Immunomodulators: Current Research Status and Future Directions vol.25, pp.24, 2019, https://doi.org/10.3390/molecules25245854
  8. Caspase-11 Noncanonical Inflammasome: A Novel Key Player in Murine Models of Neuroinflammation and Multiple Sclerosis vol.28, pp.4, 2019, https://doi.org/10.1159/000516064
  9. Red ginseng extracts as an adjunctive therapeutic for gout: preclinical and clinical evidence vol.32, pp.1, 2021, https://doi.org/10.1080/09540105.2020.1854189
  10. Ginsenoside Rg1 Prevents Cognitive Impairment and Hippocampal Neuronal Apoptosis in Experimental Vascular Dementia Mice by Promoting GPR30 Expression vol.2021, 2019, https://doi.org/10.1155/2021/2412220
  11. Syk-MyD88 Axis Is a Critical Determinant of Inflammatory-Response in Activated Macrophages vol.12, 2019, https://doi.org/10.3389/fimmu.2021.767366
  12. Anti-NLRP3 Inflammasome Natural Compounds: An Update vol.9, pp.2, 2021, https://doi.org/10.3390/biomedicines9020136
  13. Roles of plant‐derived bioactive compounds and related microRNAs in cancer therapy vol.35, pp.3, 2019, https://doi.org/10.1002/ptr.6883
  14. Pharmacological activities of ginsenoside Rg5 (Review) vol.22, pp.2, 2019, https://doi.org/10.3892/etm.2021.10272
  15. Functional Interplay between Methyltransferases and Inflammasomes in Inflammatory Responses and Diseases vol.22, pp.14, 2019, https://doi.org/10.3390/ijms22147580
  16. Ginsenoside Rk3 alleviates gut microbiota dysbiosis and colonic inflammation in antibiotic-treated mice vol.146, 2021, https://doi.org/10.1016/j.foodres.2021.110465
  17. Structural analogues in herbal medicine ginseng hit a shared target to achieve cumulative bioactivity vol.4, pp.1, 2019, https://doi.org/10.1038/s42003-021-02084-3
  18. Bioconversion of Ginsenosides in American Ginseng Extraction Residue by Fermentation with Ganoderma lucidum Improves Insulin-like Glucose Uptake in 3T3-L1 Adipocytes vol.7, pp.4, 2019, https://doi.org/10.3390/fermentation7040297