DOI QR코드

DOI QR Code

Molecular Identification and Evaluation of Indigenous Bacterial Isolates for Their Plant Growth Promoting and Biological Control Activities against Fusarium Wilt Pathogen of Tomato

  • Islam, Amanul (Department of Botany, Jahangirnagar University) ;
  • Kabir, Md. Shahinur (Department of Botany, Jahangirnagar University) ;
  • Khair, Abul (Department of Botany, Jahangirnagar University)
  • Received : 2018.06.15
  • Accepted : 2018.12.05
  • Published : 2019.04.01

Abstract

In search of an effective biological control agent against the tomato pathogen Fusarium oxysporum f. sp. lycopersici, rhizospheric soil samples were collected from eight agro-ecological zones of Bangladesh. Among the bacteria isolated from soil, 24 isolates were randomly selected and evaluated for their antagonistic activity against F. oxysporum f. sp. lycopersici. The two promising antagonistic isolates were identified as Brevundimonas olei and Bacillus methylotrophicus based on morphological, biochemical and molecular characteristics. These two isolates were evaluated for their biocontrol activity and growth promotion of two tomato cultivars (cv. Pusa Rubi and Ratan) for two consecutive years. Treatment of Pusa Rubi and Ratan seeds with B. olei prior to inoculation of pathogen caused 44.99% and 41.91% disease inhibition respectively compared to the untreated but pathogen-inoculated control plants. However, treatment of Pusa Rubi and Ratan seeds with B. methylotrophicus caused 24.99% and 39.20% disease inhibition respectively. Furthermore, both the isolates enhanced the growth of tomato plants. The study revealed that these indigenous bacterial isolates can be used as an effective biocontrol agent against Fusarium wilt of tomato.

Keywords

E1PPBG_2019_v35n2_137_f0001.png 이미지

Fig. 2. Phylogenetic tree showing position of the biocontrol agents (▲) used in this study. The 16S rDNA sequences were aligned with the ClustalW and the tree was constructed with the maximum likelihood method based on the Tamura-Nei model integrated in the MEGA7 software. The GenBank accession numbers of the DNA sequences are shown in parentheses.

E1PPBG_2019_v35n2_137_f0003.png 이미지

Fig. 4. The effect of bacterization of tomato seeds with two biocontrol agents on root length of tomato seedlings. Data are mean of three replications. Bars indicate error of the mean.

E1PPBG_2019_v35n2_137_f0004.png 이미지

Fig. 5. The effect of bacterization of tomato seeds with two biocontrol agents on the fresh weight of tomato seedlings. Data are mean of three replications. Bars indicate standard error of the mean.

E1PPBG_2019_v35n2_137_f0006.png 이미지

Fig. 1. Inhibition of F. oxysporum f. sp. lycopersici by two bacterial isolates (A) Bacillus methylotrophicus Prb1, and (B) Brevundimonas olei Prd2, and (C) mycelial growth of F. oxysporum in control plate.

E1PPBG_2019_v35n2_137_f0007.png 이미지

Fig. 3. The effect of bacterization of tomato seeds with two biocontrol agents on shoot length of tomato seedlings. Data are mean of three replications. Bars indicate standard error of the mean.

E1PPBG_2019_v35n2_137_f0008.png 이미지

Fig. 6. The effect of bacterization of tomato seeds with two biocontrol agents on vigor index of tomato seedlings. Data are mean of three replications. Bars indicate standard error of the mean.

Table 1. Location of the agricultural fields for the collection of rhizospheric soil samples

E1PPBG_2019_v35n2_137_t0001.png 이미지

Table 4. Survival of selected bacterial isolates at an interval of 7 days

E1PPBG_2019_v35n2_137_t0004.png 이미지

Table 2. In vitro biocontrol activity of bacterial isolates against Fusarium oxysporum

E1PPBG_2019_v35n2_137_t0010.png 이미지

Table 3. Biochemical and physiological characteristics of two biocontrol agents

E1PPBG_2019_v35n2_137_t0011.png 이미지

Table 5. Effect of concentration of ferric chloride on the mycelial growth (mm) of Fusarium oxysporum

E1PPBG_2019_v35n2_137_t0012.png 이미지

Table 6. Effect of bacterial isolates on the seed germination of two cultivars (Pusa Ruby and Ratan) of tomato

E1PPBG_2019_v35n2_137_t0013.png 이미지

Table 7. The average disease incidence and biocontrol efficacy in controlling Fusarium wilt of treated tomato plant with rhizobacterial isolates in year 2015-16 and 2016-17

E1PPBG_2019_v35n2_137_t0014.png 이미지

Table 8. Effect of bacterial isolates on growth parameters of tomato (cv. Pusa Ruby)

E1PPBG_2019_v35n2_137_t0015.png 이미지

Table 9. Effect of bacterial isolates on growth parameters of tomato (cv. Ratan)

E1PPBG_2019_v35n2_137_t0016.png 이미지

References

  1. Akkopru, A. and Demir, S. 2005. Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f.sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J. Phytopathol. 153:544-550. https://doi.org/10.1111/j.1439-0434.2005.01018.x
  2. Almoneafy, A., Xie, G. L., Tian, W. X., Xu, L. H., Zhang, G. Q. and Ibrahim, M. 2012. Characterization and evaluation of Bacillus isolates for their potential plant growth and biocontrol activities against tomato bacterial wilt. Afr. J. Biotechnol. 11:7193-7201.
  3. Altschul, S. F., Gish W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  4. Ambawade, M. S. and Pathade, G. R. 2015. Production of gibberellic acid by Bacillus siamensis BE 76 isolated from banana plant (Musa spp.). Int. J. Sci. Res. 4:394-398.
  5. Ayvaz, M., Koyuncu, M., Guven, A. and Fagerstedt, K. V. 2012. Does boron affect hormone levels of barley cultivars? Eurasia. J. Biosci. 6:113-120.
  6. Bahig, A. E., Aly, E. A., Khaled, A. A. and Amel, K. A. 2008. Isolation, characterization and application of bacterial population from agricultural soil at Sohag Province, Egypt. Mal. J. Microbiol. 4:42-50.
  7. Bakker, A. W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol. Biochem. 19:451-457. https://doi.org/10.1016/0038-0717(87)90037-X
  8. Belkar, Y. K. and Gade, R. M. 2012. Compatibility of fluorescent Pseudomonads with beneficial microorganisms. J. Plant Dis. Sci. 7:267-268.
  9. Beneduzi, A., Peres, D., Vargas, L. K., Bodanese-Zanettini, M. H. and Passaglia, L. M. P. 2008. Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing Bacilli isolated from rice fields in south Brazil. Appl. Soil Ecol. 39:311-320. https://doi.org/10.1016/j.apsoil.2008.01.006
  10. Bergey, D. H. and Holt, J. G. 2000. Bergey's manual of determinative bacteriology. 9th ed. Lippincott Williams & Wilkins, Philadelphia, USA. 787 pp.
  11. Bhakthavatchalu, S., Shivakumar, S. and Sullia, S. B. 2013. Characterization of multiple plant growth promotion traits of Pseudomonas aeruginosa FP6, a potential stress tolerant biocontrol agent. Ann. Biol. Res. 4:214-223.
  12. Bultreys, A. and Gheysen, I. 2000. Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG 2352. Appl. Environ. Microbiol. 66:325-331. https://doi.org/10.1128/AEM.66.1.325-331.2000
  13. Carmassi, G., Incrocci, L., Incrocci, G. and Pardossi, A. 2007. Non-destructive estimation of leaf area in (Solanum lycopersicum L.) and gerbera (Gerbera jamesonii H. bolus). Agr. Med. 137:172-176.
  14. Chookietwattana, K. and Maneewan, K. 2012. Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress. Soil Environ. 31:30-36.
  15. Fan, Z.-U., Miao, C.-P., Qiao, X.-G., Zheng, Y.-K., Chen, H.-H., Chen, Y.-W., Xu, L.-H., Zhao, L.-X. and Guan, H.-L. 2016. Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng. J. Ginseng Res. 40:97-104. https://doi.org/10.1016/j.jgr.2015.05.003
  16. Freeman, S., Zveibil, A., Vintal, H. and Maymon, M. 2002. Isolation of non-pathogenic mutants of Fusarium oxysporum f. sp. melonis for biological control of Fusarium wilts in Cucurbits. Phytopathology 92:164-168. https://doi.org/10.1094/PHYTO.2002.92.2.164
  17. Ge, B., Liu, B., Nwet, T. T., Zhao, W., Shi, L. and Zhang, K. 2016. Bacillus methylotrophicus strain NKG-1, isolated from Changbai mountain, China, has potential applications as a biofertilizer or biocontrol agent. PLoS ONE 11:e0166079. https://doi.org/10.1371/journal.pone.0166079
  18. Geetha, K., Chaitanya, K. and Bhadraiah, B. 2014. Isolation and characterization of PGPR isolates from rhizosphere soils of greengram in Warangal district of Telangana. Int. J. Pharm. Bio Sci. 5:153-163.
  19. Gulati, A., Sood, S., Rahi, P., Thakur, R., Chauhan, S. and Chawla, I. 2011. Diversity analysis of diazotrophic bacteria associated with the roots of tea (Camellia sinensis (L.) O. Kuntze). J. Microbiol. Biotechnol. 21:545-555. https://doi.org/10.4014/jmb.1012.12022
  20. Guo, J. H., Qi, H. Y., Guo, Y. H., Ge, H. L., Gong, L. Y., Zhang, L. X. and Sun, P. H. 2004. Biocontrol of tomato wilt by growth promoting rhizobacteria. Biol. Control 29:66-72. https://doi.org/10.1016/S1049-9644(03)00124-5
  21. ISTA. 1976. International rules for seed testing. Seed Sci. Technol. 4:3-49.
  22. ISTA. 1996. International rules for seed testing. Seed Sci. Technol. 24:211-288.
  23. ISTA. 1999. International rules for seed testing. Seed Sci. Technol. 27:27-31.
  24. Khalequzzaman, K. M., Jinnah, M. A., Rashid, M. A. A. M., Chowdhury, M. N. A. and Alam, M. M. 2002. Effect of Pseudomonas fluorescens in controlling bacterial wilt of tomato. Pak. J. Plant Pathol. 1:71-73. https://doi.org/10.3923/ppj.2002.71.73
  25. Khan, M. S. and Zaidi, A. 2002. Plant growth promoting rhizobacteria from rhizosphere of wheat and chickpea. Ann. Plant Prot. Sci. 10:265-271.
  26. Kumar, P., Dubey, R. C. and Maheshwari, D. K. 2012. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol. Res. 167:493-499. https://doi.org/10.1016/j.micres.2012.05.002
  27. Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874. https://doi.org/10.1093/molbev/msw054
  28. Kumar, V. and Gera, R. 2014. Isolation of a multi-trait plant growth promoting Brevundimonas sp. and its effect on the growth of Bt-cotton. 3 Biotech. 4:97-101. https://doi.org/10.1007/s13205-013-0126-4
  29. Lamsal, K., Kim, S. W., Kim, Y. S. and Lee, Y. S. 2013. Biocontrol of late blight and plant growth promotion in tomato using rhizobacterial isolates. J. Microbiol. Biotechnol. 23:897-904. https://doi.org/10.4014/jmb.1209.09069
  30. Lee, M., Srinivasan, S. and Kim, M. K. 2010. New taxa in Alphaproteobacteria: Brevundimonas olei sp. nov., an esteraseproducing bacterium. J. Microbiol. 48:616-622. https://doi.org/10.1007/s12275-010-9367-7
  31. Maclachlan, S. and Zalik, S. 1963. Plastid structure, chlorophyll concentration and free amino-acid composition of a chlorophyll mutant of barley. Can. J. Bot. 41:1053-1062. https://doi.org/10.1139/b63-088
  32. Malleswari, D. and Bagyanarayana, G. 2013. In vitro screening of rhizobacteria isolated from the rhizosphere of medicinal and aromatic plants for multiple plant growth promoting activities. J. Microbiol. Biotechnol. Res. 3:84-91.
  33. Mezeal, I. A. 2014. Study biocontrol efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani and Fusarium oxysporum causing disease in tomato. Indian J. Fund. Appl. Life Sci. 4:175-183.
  34. Mishra, D. S., Gupta, A. K., Prajapati, C. R. and Singh, U. S. 2011. Combination of fungal and bacterial antagonists for management of root and stem rot disease of soybean. Pak. J. Bot. 43:2569-2574.
  35. Mistry, K. K., Chatterjee, D. D. and Khair, A. 2008. Effect of compost on diseases incidence in winter tomato (Lycopersicon esculentum Mill.) under open field conditions. B. Res. Pub. J. 1:312-318.
  36. Murthy, K. N., Uzma, F., Chitrashree and Srinivas, C. 2014. Induction of systemic resistance in tomato against Ralstonia solanacearum by Pseudomonas fluorescens. Am. J. Plant Sci. 5:1799-1811. https://doi.org/10.4236/ajps.2014.512193
  37. Naik, P. R., Raman, G., Narayanan, K. B. and Sakthivel, N. 2008. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol. 8:230. https://doi.org/10.1186/1471-2180-8-230
  38. Niranjan Raj, S., Deepak, S. A., Basavaraju, P., Shetty, H. S., Reddy, M. S. and Kloepper, J. W. 2003. Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot. 22:579-588. https://doi.org/10.1016/S0261-2194(02)00222-3
  39. Raihan, A., Khandaker, M., Ferdous, M., Rahman, M. A., Uddin, J. and Nahiyan, M. 2016. Trichoderma suppresses pathogenic Fusarium causing tomato wilt in Bangladesh. British Microbiol. Res. J. 14:1-9.
  40. Raj, S. N., Deepak, S. A., Basavaraju, P., Shetty, H. S., Reddy, M. S. and Kloepper, J. W. 2003. Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot. 22:579-588. https://doi.org/10.1016/S0261-2194(02)00222-3
  41. Ramanathan, A., Shanmugam, V., Raguchander, T. and Samiyappan, R. 2002. Induction of systemic resistance in ragi against blast disease caused by Pseudomonas fluorescens. Ann. Plant Prot. Sci. 10:313-318.
  42. Rana, A., Saharan, B., Joshi, M., Prasanna, R., Kumar, K. and Nain, L. 2011. Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann. Microbiol. 61:893-900. https://doi.org/10.1007/s13213-011-0211-z
  43. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory guide for the identification of plant pathogenic bacteria. 3rd ed. APS Press, St. Paul, MN, USA. 373 pp.
  44. Shruti, K., Arun, K. and Yuvneet, R. 2013. Potential plant growthpromoting activity of rhizobacteria Pseudomonas sp in Oryza sativa. J. Nat. Prod. Plant Resour. 3:38-50.
  45. Siddiqui, I. A., Shaukat, S. S., Sheikh, I. H. and Khan, A. 2006. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J. Microbiol. Biotechnol. 22:641-650. https://doi.org/10.1007/s11274-005-9084-2
  46. Silva, H. S. A., Romeiro, R. S. and Mounteer, A. 2003. Development of a root colonization bioassay for rapid screening of rhizobacteria for potential biocontrol agents. J. Phytopathol. 151:42-46. https://doi.org/10.1046/j.1439-0434.2003.00678.x
  47. Singh, A. K. and Kamal, S. 2012. Chemical control of wilt in tomato (Lycopersicon esculentum L.). Int. J. Hortic. 2:5-6.
  48. Sivamani, E. and Gnanamanickam, S. S. 1988. Biological counts of F. oxysporum f.sp. cubense in banana by inoculation with Pseudomonas fluorescens. Plant Soil 107:3-9. https://doi.org/10.1007/BF02371537
  49. Song, W., Zhou, L., Yang, C., Cao, X., Zhang, L. and Liu, X. 2004. Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Prot. 23:120-123.
  50. Sudini, H., Liles, M. R., Arias, C. R., Bowen, K. L. and Huettel, R. N. 2011. Exploring soil bacterial communities in different peanut-cropping sequences using multiple molecular approaches. Phytopathology 101:819-827. https://doi.org/10.1094/PHYTO-11-10-0310
  51. Suryakala, D., Maheswaridevi, P. U. and Lakshmi, K. V. 2004. Chemical characterization and in vitro antibiosis of siderophores of rhizosphere fluorescent pseudomonads. Indian J. Microbiol. 44:105-108.
  52. Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10:512-526.
  53. Tans-Kersten, J., Huang, H. and Allen, C. 2001. Ralstonia solanacearum needs motility for invasive virulence on tomato. J. Bacteriol. 183:3597-3605. https://doi.org/10.1128/JB.183.12.3597-3605.2001
  54. Van Overbeek, L., Van Veen, J. A. and Van Elsas, J. D. 1997. Induced reporter gene activity, enhanced stress resistance, and competitive ability of a genetically modified Pseudomonas fluorescens strain released into a field plot planted with wheat. Appl. Environ. Microbiol. 63:1965-1973. https://doi.org/10.1128/AEM.63.5.1965-1973.1997
  55. Wei, Z., Huang, J., Yang, T., Jousset, A., Xu, Y., Shen, Q. and Friman, V. 2017. Seasonal variation in the biocontrol efficiency of bacterial wilt is driven by temperature-mediated changes in bacterial competitive interactions. J. Appl. Ecol. 54:1440-1448. https://doi.org/10.1111/1365-2664.12873
  56. Weller, D. M. and Cook, R. J. 1983. Suppression of take-all of wheat by seed treatments with fluorescent Pseudomonads. Phytopathology 73:463-469. https://doi.org/10.1094/Phyto-73-463
  57. Whipps, J. M. 1997. Ecological considerations involved in commercial development of biological control agents for soilborne diseases. In: Modern soil microbiology, eds. by J. D. van Elsas, J. T. Trevors and E. M. H. Wellington, pp. 525-545. Elsevier, The Netherlands.