DOI QR코드

DOI QR Code

Antimicrobial Activity of Various Parts of Tomato Plants Varied with Different Solvent Extracts

  • Kim, Dong Sub (Department of Plant Science, Seoul National University) ;
  • Kwack, Yurina (Division of EcoDivision of Eco-friendly Horticulture, Yonam College) ;
  • Lee, Jung Heon (Department of Plant Science, Seoul National University) ;
  • Chun, Changhoo (Department of Plant Science, Seoul National University)
  • Received : 2018.07.20
  • Accepted : 2018.12.06
  • Published : 2019.04.01

Abstract

The antimicrobial activity of acetone, hexane, dichloromethane, and methanol extracts from leaves, stems, immature green fruits, and red fruits of tomato plants was examined against six phytopathogens. The minimum inhibitory concentration (MIC) of the acetonic extracts from these four plant parts was lower than that of the other solvents. Among the acetonic extracts, tomato leaves had a lower MIC than the other tomato parts. The acetonic extract from tomato leaves was therefore selected as a source of antimicrobial substances. The acetonic extract from tomato leaves inhibited mycelial growth of Fusarium oxysporum f. sp. lycopersici, Glomerella cingulata, and Rhizoctonia solani. Mycelial growth of R. solani treated with acetone extract from leaves showed more susceptibility than the other phytopathogens. Using 0.31 mg/ml of the acetonic extract from leaves, mycelial growth of R. solani on days 1, 2, and 3 decreased by 50.0, 52.1, and 64.0%, respectively, compared with acetone solvent treatment. The antimicrobial compounds effective against R. solani were identified as linolenic acid and caffeic acid by bioautography and GC-MS. These two compounds were used to treat six phytopathogens to confirm their antimicrobial activities. Linolenic acid inhibited mycelial growth of R. solani, while caffeic acid showed only slight antimicrobial activity. Results indicated that we propose extracts from tomato leaves which included antimicrobial compounds may provide a new lead in the pursuit of new biological sources of agrochemical candidates.

Keywords

E1PPBG_2019_v35n2_149_f0001.png 이미지

Fig. 1. Inhibitory effect of acetonic extract from tomato leaves on mycelial growth of six microorganisms. (A) Colletotrichum coccodes; (B) Fusarium oxysporum; (C) Glomerella cingulata; (D) Rhizoctonia solani, (E) Phytophthora cactorum; (F) P. capsici. Vertical bars represent standard errors of the means.

E1PPBG_2019_v35n2_149_f0002.png 이미지

Fig. 2. Bioautogram of acetonic extracts from leaves (L), immature green fruits (G), and red fruits (R) of tomato plants. White areas indicate inhibition of microbial growth. (A) Colletotrichum coccodes; (B) Fusarium oxysporum; (C) Glomerella cingulata; (D) Rhizoctonia solani; (E) Phytophthora cactorum; (F) P. capsici.

E1PPBG_2019_v35n2_149_f0003.png 이미지

Fig. 3. GC-MS chromatogram of preparative TLC-isolated compounds in acetonic extract from tomato leaves.

E1PPBG_2019_v35n2_149_f0004.png 이미지

Fig. 4. Linolenic and caffeic acids visualized on TLC using phosphomolybdic acid and anisaldehyde-sulfuric acid.

E1PPBG_2019_v35n2_149_f0005.png 이미지

Fig. 5. Inhibitory effect of linolenic (A) and caffeic acids (B) on mycelial growth of Rhizoctonia solani. Vertical bars represent standard errors of the means.

Table 1. Minimum inhibitory concentrations (MIC) of extracts from tomato plants with various solvents against six pathogenic microorganisms

E1PPBG_2019_v35n2_149_t0001.png 이미지

References

  1. Abdel-Motaal, F. F., El-Zayat, S. A., Kosaka, Y., El-Sayed, M. A., Kashima, R., Maeda, Y., Nassar, M. S. M. and Ito, S. 2010. Antifungal activities of hyoscyamine and scopolamine against two major rice pathogens: Magnaporthe oryzae and Rhizoctonia solani. J. Gen. Plant Pathol. 76:102-111. https://doi.org/10.1007/s10327-010-0225-6
  2. Al-Mughrabi, K., Aburjai, T. A., Anfoka, G. H. and Shahrour, W. 2001. Antifungal activity of olive cake extracts. Phytopathol. Mediterr. 40:240-244.
  3. Bajpai, V. K., Shukla, S. and Kang, S. C. 2008. Chemical composition and antifungal activity of essential oil and various extract of Silene armeria L. Bioresour. Technol. 99:8903-8908. https://doi.org/10.1016/j.biortech.2008.04.060
  4. Castillo, F., Hernandez, D., Gallegos, G., Mendez, M., Rodrîguez, R., Reyes, A. and Aguilar, C. N. 2010. In vitro antifungal activity of plant extracts obtained with alternative organic solvents against Rhizoctonia solani Kuhn. Ind. Crops Prod. 32:324-328. https://doi.org/10.1016/j.indcrop.2010.05.013
  5. Conconi, A., Miquel, M., Browse, J. A. and Ryan, C. A. 1996. Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol. 111:797-803. https://doi.org/10.1104/pp.111.3.797
  6. Hamberg, M. 1999. An epoxy alcohol synthase pathway in higher plants: biosynthesis of antifungal trihydroxy oxylipins in leaves of potato. Lipids 34:1131-1142. https://doi.org/10.1007/s11745-999-0464-7
  7. Iijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., Suzuki, T., Suzuki, H., Okazaki, K., Kitayama, M., Kanaya, S., Aoki, K. and Shibata, D. 2008. Metabolite annotations based on the integration of mass spectral information. Plant J. 54:949-962. https://doi.org/10.1111/j.1365-313X.2008.03434.x
  8. Jasso de Rodriguez, D. J., Hernandez-Castillo, D., Angulo-Sanchez, J. L., Rodriguez-Garcia, R., Villarreal Quintanilla, J. A. and Lira-Saldivar, R. H. 2007. Antifungal activity in vitro of Flourensia spp. extracts on Alternaria sp., Rhizoctonia solani, and Fusarium oxysporum. Ind. Crops Prod. 25:111-116. https://doi.org/10.1016/j.indcrop.2006.08.007
  9. Jayaraman, S., Manoharan, M. S. and Illanchezian, S. 2008. Invitro antimicrobial and antitumor activities of Stevia rebaudiana (Asteraceae) leaf extracts. Trop. J. Pharm. Res. 7:1143-1149. https://doi.org/10.4314/tjpr.v7i4.14700
  10. Kim, D. S., Na, H., Kwack, Y. and Chun, C. 2014. Secondary metabolite profiling in various parts of tomato plants. Korean J. Hortic. Sci. Technol. 32:252-260. https://doi.org/10.7235/hort.2014.13165
  11. Kordali, S., Cakir, A., Ozer, H., Cakmakci, R., Kesdek, M. and Mete, E. 2008. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol. 99:8788-8795. https://doi.org/10.1016/j.biortech.2008.04.048
  12. Krygier, K., Sosulski, F. and Hogge, L. 1982. Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure. J. Agric. Food Chem. 30:330-334. https://doi.org/10.1021/jf00110a028
  13. Kuo, P. C., Lin, T. C., Yang, C. W., Lin, C. L., Chen, C. F. and Huang, J. W. 2010. Bioactive saponin from tea seed pomace with inhibitory effects against Rhizoctonia solani. J. Agric. Food Chem. 58:8618-8622. https://doi.org/10.1021/jf1017115
  14. Mahlo, S. M., McGaw, L. J. and Eloff, J. N. 2010. Antifungal activity of leaf extracts from South African trees against plant pathogens. Crop Prot. 29:1529-1533. https://doi.org/10.1016/j.cropro.2010.08.015
  15. Masoko, P., Picard, J. and Eloff, J. N. 2005. Antifungal activities of six South African Terminalia species (Combretaceae). J. Ethnopharmacol. 99:301-308. https://doi.org/10.1016/j.jep.2005.01.061
  16. Moco, S., Bino, R. J., Vorst, O., Verhoeven, H. A., de Groot, J., van Beek, T. A., Vervoort, J. and de Vos, C. H. 2006. A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol. 141:1205-1218. https://doi.org/10.1104/pp.106.078428
  17. Moco, S., Capanoglu, E., Tikunov, Y., Bino, R. J., Boyacioglu, D., Hall, R. D., Vervoort, J. and de Vos, C. H. 2007. Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J. Exp. Bot. 58:4131-4146. https://doi.org/10.1093/jxb/erm271
  18. Osorio, E., Flores, M., Hernandez, D., Ventura, J., Rodriguez, R. and Aguilar, C. N. 2010. Biological efficiency of polyphenolic extracts from pecan nuts shell (Carya illinoensis), pomegranate husk (Punica granatum), and creosote bush leaves (Larrea tridentata Cov.) against plant pathogenic fungi. Ind. Crops Prod. 31:153-157. https://doi.org/10.1016/j.indcrop.2009.09.017
  19. Ostensvik, O., Skulberg, O. M., Underdal, B. and Hormazabal, V. 1998. Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria - a comparative study of bacterial bioassays. J. Appl. Microbiol. 84:1117-1124. https://doi.org/10.1046/j.1365-2672.1998.00449.x
  20. Rouser, G., Kritchevsky, G., Simon, G. and Nelson, G. J. 1967. Quantitative analysis of brain and spinach leaf lipids employing silicic acid column chromatography and acetone for elution of glycolipids. Lipids 2:37-40. https://doi.org/10.1007/BF02531998
  21. Salisbury, F. B., Gitelson, J. I. and Lisovsky, G. M. 1997. Bios- 3: Siberian experiments in bioregenerative life support. BioScience 47:575-585. https://doi.org/10.2307/1313164
  22. Salunkhe, D. K., Jadhav, S. J. and Yu, M. H. 1974. Quality and nutritional composition of tomato fruit as influenced by certain biochemical and physiological changes. Qual. Plant. 24:85-113. https://doi.org/10.1007/BF01092727
  23. San Francisco, M. and Cooper-Driver, G. 1984. Anti-microbial activity of phenolic acids in Pteridium aquilinum. Amer. Fern J. 74:87-96. https://doi.org/10.2307/1546543
  24. Smith, D. A. 1976. Some effects of the phytoalexin, kievitone, on the vegetative growth of Aphanomyces euteiches, Rhizoctonia solani and Fusarium solani f. sp. phaseoli. Physiol. Plant Pathol. 9:45-48. https://doi.org/10.1016/0048-4059(76)90074-6
  25. Tapwal, A., Garg, S., Gautam, N. and Kumar, R. 2011. In vitro antifungal potency of plant extracts against five phytopathogens. Braz. Arch. Biol. Technol. 54:1093-1098. https://doi.org/10.1590/S1516-89132011000600003
  26. Walters, D., Raynor, L., Mitchell, A., Walker, R. and Walker, K. 2004. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia 157:87-90. https://doi.org/10.1023/B:MYCO.0000012222.68156.2c
  27. Weidenborner, M., Hindorf, H., Jha, H. C., Tsotsonos, P. and Egge, H. 1990. Antifungal activity of isoflavonoids in different reduced stages on Rhizoctonia solani and Sclerotium rolfsii. Phytochemistry 29:801-803. https://doi.org/10.1016/0031-9422(90)80022-9