DOI QR코드

DOI QR Code

Changes in chemical characteristics of cellulase-treated wheat germ extract

효소 처리 밀 배아 추출물의 화학적 특성 변화

  • 이재강 (사조동아원(주) 제분연구소) ;
  • 장다빈 (경희대학교 식품생명공학과) ;
  • 강동우 (사조동아원(주) 제분연구소) ;
  • 이정훈 (사조동아원(주) 제분연구소) ;
  • 금혜임 (사조동아원(주) 제분연구소) ;
  • 최용현 (사조동아원(주) 제분연구소) ;
  • 강희 (경희대학교 후마니타스대학) ;
  • 최용석 (사조동아원(주) 제분연구소) ;
  • 김대옥 (경희대학교 식품생명공학과)
  • Received : 2018.12.31
  • Accepted : 2019.02.09
  • Published : 2019.04.30

Abstract

Wheat germ, which is rich in nutrients and phytochemicals, is a by-product during the milling process of wheat kernel. In this study, we aimed to increase the amount of bioactive 2,6-dimethoxy-1,4-benzoquinone (2,6-DMBQ) in wheat germ using the cell-wall-degrading enzyme cellulase (Celluclast 1.5L). The amounts of organic acids, free sugars, and 2,6-DMBQ in wheat germ treated with Celluclast 1.5L were evaluated at various reaction times and temperatures. The results of reversed-phase high-performance liquid chromatography of Celluclast 1.5L-treated wheat germ revealed 2,6-DMBQ, four organic acids (tartaric, acetic, lactic, and succinic acids), and three free sugars (sucrose, fructose, and glucose). As reaction time and temperature of the mixture of wheat germ and Celluclast 1.5L increased, the contents of four organic acids, glucose, fructose, and 2,6-DMBQ increased, but that of sucrose decreased. Taken together, these results suggest that Celluclast 1.5L-treated wheat germ containing increased amounts of 2,6-DMBQ serves as a source of functional ingredients in food industry.

밀 배아를 셀룰레이즈 활성이 있는 Celluclast 1.5L을 이용하여 다양한 시간 및 온도의 반응에서 생성되는 유기산(주석산, 젖산, 초산, 호박산)과 유리당(포도당, 설탕, 과당) 함량을 분석하였다. 또한 젖산, 초산, 호박산, 주석산으로 pH 4.5로 조정한 유기산 용액에서 Celluclast 1.5L과 밀 배아를 반응시켜 2,6-DMBQ의 함량에 미치는 영향을 평가하였다. 밀 배아에 대한 효소 반응 시간 및 온도가 증가함에 따라 주석산, 젖산, 초산, 호박산과 이들의 총유기산 함량은 증가하였다. 밀 배아 효소 반응 추출액의 설탕 농도는 효소 반응 시간이 증가할수록 지속적으로 감소한 반면에, 과당과 포도당의 농도는 효소 반응 시간이 길어짐에 따라 증가하였다. 유기산을 첨가한 Celluclast 1.5L 효소 추출 용액으로 반응시킨 밀 배아는 반응시간이 증가할수록 2,6-DMBQ 함량이 증가하는 경향을 보였지만, 대조군 대비 향상된 수치를 보이지 않았다. 향후 효소 처리 밀 배아 추출물을 활용한 다양한 생리활성에 대한 효능 평가와 더불어 효소 처리 밀 배아 추출물의 식품 소재화에 대한 연구가 필요할 것으로 보인다.

Keywords

SPGHB5_2019_v51n2_97_f0001.png 이미지

Fig. 1. Effects of extraction times on 2,6-dimethoxy-1,4-benzoquinone (2,6-DMBQ) production in Celluclast 1.5L-treated wheat germ extracts.

Table 1. Analytical conditions of high-performance liquid chromatography for free sugars, organic acids, and 2,6-dimethoxy-1,4-benzoquinone (2,6-DMBQ)

SPGHB5_2019_v51n2_97_t0001.png 이미지

Table 2. Contents of organic acids of Celluclast 1.5L-treated wheat germ extract at different reaction temperatures and times

SPGHB5_2019_v51n2_97_t0002.png 이미지

Table 3. Contents of free sugars of wheat germ extract treated with Celluclast 1.5L at various extraction times at 30℃

SPGHB5_2019_v51n2_97_t0003.png 이미지

References

  1. Choi Y, Lee J, Lee J, Kum H, Choi Y, Shin M. Effects of enzyme treatment on antioxidant activity of wheat germ. Korean J. Food Cook. Sci. 34: 512-518 (2018) https://doi.org/10.9724/kfcs.2018.34.5.512
  2. Do Y-S, Whang H-J, Ku J-E, Yoon K-R. Organic acids content of the selected Korean apple cultivars. Korean J. Food Sci. Technol. 37: 992-927 (2005)
  3. Jeong H-Y, Choi Y-S, Lee J-K, Lee B-J, Kim W-K, Kang H. Antiinflammatory activity of citric acid-treated wheat germ extract in lipopolysaccharide-stimulated macrophages. Nutrients 9: 730 (2017) https://doi.org/10.3390/nu9070730
  4. Kang B-K, Kim M-J, Jeong D-H, Kim K-B-W-R, Bae N-Y, Park JH, Park S-H, Ahn D-H. Anti-inflammatory effect of wheat germ oil on lipopolysaccharide-stimulated RAW 264.7 cells and mouse ear edema. Microbiol. Biotechnol. Lett. 44: 236-245 (2016a) https://doi.org/10.4014/mbl.1601.01001
  5. Kang SM, Kim SJ, Ko KH, Nam S. Formation of biogenic amines and bioactivities of Makgeolli under different fermentation conditions. Korean J. Food Preserv. 23: 402-412 (2016b) https://doi.org/10.11002/kjfp.2016.23.3.402
  6. Kim HM, Park JH, Choi IS, Wi SG, Ha S, Chun HH, Hwang IM, Chang JY, Choi H-J, Kim J-C, Park HW. Effective approach to organic acid production from agricultural kimchi cabbage waste and its potential application. PLOS One 13: e0207801 (2018) https://doi.org/10.1371/journal.pone.0207801
  7. Lee S-H, Kim K-N, Cha S-H, Ahn G-N, Jeon Y-J. Comparison of antioxidant activities of enzymatic and methanolic extracts from Ecklonia cava stem and leave. J. Korean Soc. Food Sci. Nutr. 35: 1139-1145 (2006) https://doi.org/10.3746/jkfn.2006.35.9.1139
  8. Mahmoud AA, Mohdaly AAA, Elneairy NAA. Wheat germ: an overview on nutritional value, antioxidant potential and antibacterial characteristics. Food Nutr. Sci. 6: 265-277 (2015) https://doi.org/10.4236/fns.2015.62027
  9. Megahed MG. Study on stability of wheat germ oil and lipase activity of wheat germ during periodical storage. Agric. Biol. J. N. Am. 2: 163-168 (2011) https://doi.org/10.5251/abjna.2011.2.1.163.168
  10. Mueller T, Jordan K, Voigt W. Promising cytotoxic activity profile of fermented wheat germ extract ($Avemar^{(R)}$) in human cancer cell lines. J. Exp. Clin. Cancer Res. 30: 42 (2011) https://doi.org/10.1186/1756-9966-30-42
  11. Myat L, Ryu G-H. Optimization of enzyme dosages for hydrolysis of destarched corn fiber subjected to acid and alkaline pretreatments for improved fermentable sugar yield. Cell. Chem. Technol. 50: 791-802 (2016)
  12. Park B-R, Kim N-J, Choi S-J, Han G-J, Kim H-Y. Physicochemical and sensory properties of Yakhobak (Cucurbita maxima subsp. maxima) paste under different high pressure heating conditions. Korean J. Food Preserv. 24: 44-51 (2017) https://doi.org/10.11002/kjfp.2017.24.1.44
  13. Park E, Kim HO, Kim G-N, Song J-H. Anti-oxidant and anti-adipogenic effects of ethanol extracts from wheat germ and wheat germ fermented with Aspergillus oryzae. Prev. Nutr. Food Sci. 20: 29-37 (2015) https://doi.org/10.3746/pnf.2015.20.1.29
  14. Pirozzi D, Fagnano M, Fiorentino N, Toscano G, Rugari F, Sannino F, Zuccaro G, Florio C. Biotechnological synthesis of succinic acid by Actinobacillus succinogenes by exploitation of lignocellulosic biomass. Chem. Eng. Trans. 57: 1741-1746 (2017)
  15. Rizzello CG, Mueller T, Coda R, Reipsch F, Nionelli L, Curiel JA, Gobbetti M. Synthesis of 2-methoxy benzoquinone and 2,6-dimethoxybenzoquinone by selected lactic acid bacteria during sourdough fermentation of wheat germ. Micro. Cell Fact. 12: 105 (2013) https://doi.org/10.1186/1475-2859-12-105
  16. Rizzello CG, Nionelli L, Coda R, De Angelis M, Gobbetti M. Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. Food Chem. 119: 1079-1089 (2010) https://doi.org/10.1016/j.foodchem.2009.08.016
  17. Rodrigues AC, Haven MO, Lindedam J, Felby C, Gama M. Celluclast and $Cellic^{(R)}$ CTec2: saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing. Enzyme Microb. Technol. 79-80: 70-77 (2015) https://doi.org/10.1016/j.enzmictec.2015.06.019
  18. Tömösközi-Farkas R, Daood HG. Modification of chromatographic method for the determination of benzoquinones in cereal products. Chromatographia 60: S227-S230 (2004) https://doi.org/10.1365/s10337-004-0201-4
  19. Toscano G, Zuccaro G, Ausiello A, Micoli L, Turco M, Pirozzi D. Production of hydrogen from giant reed by dark fermentation. Chem. Eng. Trans. 37: 331-336 (2014)
  20. Tsai C-T, Meyer AS. Enzymatic cellulose hydrolysis: enzyme reusability and visualization of ${\beta}$-glucosidase immobilized in calcium alginate. Molecules 19: 19390-19406 (2014) https://doi.org/10.3390/molecules191219390
  21. Yoo J-G, Kim M-D. Production of 2-methoxy-1,4-benzoquinone (2-MBQ) and 2,6-dimethoxy-1,4-benzoquinone (2,6-DMBQ) from wheat germ using lactic acid bacteria and yeast. Food Eng. Prog. 14: 292-298 (2010)
  22. Zhu K-X, Zhou H-M, Qian H-F. Proteins extracted from defatted wheat germ: nutritional and structural properties. Cereal Chem. 83: 69-75 (2006) https://doi.org/10.1094/CC-83-0069