DOI QR코드

DOI QR Code

Determination the optimum extraction method for saponin lancemasides in Codonopsis lanceolata

더덕 사포닌인 lancemasides의 최적 추출 방법 구명

  • Lee, Min Ju (Department of Agronomy, Gyeongsang National University) ;
  • Nam, Ju Hee (Department of Agronomy, Gyeongsang National University) ;
  • Um, In Eeok (Department of Agronomy, Gyeongsang National University) ;
  • Kang, Chang Keun (College of Veterinary Medicine, Gyeongsang National University) ;
  • Rho, Il Rae (Department of Agronomy, Gyeongsang National University)
  • Received : 2019.01.24
  • Accepted : 2019.03.28
  • Published : 2019.04.30

Abstract

This study was conducted to select the optimal extraction method of codonopsis lanceolata saponin. To investigate the lancemasides content depending on each extraction method, various extractions were performed: reflux (methanol and butanol), hot water, as well as ultrasonic bath (40 kHz; continuous irradiation/interval irradiation) and ultrasonicator (20 kHz) extractions. From the result, the overall lancemasides content were the highest in ultrasonic bath (MeOH; continuous irradiation) extraction, followed by ultrasonic bath (water; continuous irradiation)>ultrasonic bath (MeOH; interval irradiation)>ultrasonicator (MeOH)>hot water>MeOH reflux>BuOH reflux extractions in that order. Sample drying method prior to ultrasonic bath extraction was more effective shade drying than freeze drying. Effective duration and temperature of extraction was 2 hr at $64^{\circ}C$. And ingredient change diverted from aster saponin Hb to lancemasides was identified by extraction condition such as extraction time and temperature.

본 연구는 더덕 사포닌의 최적 추출 방법을 구명하기 위해 수행되었다. 추출 방법에 따른 lancemasides 함량을 조사하기 위해 환류 추출(MeOH, BuOH), 열수 추출(Hot water), 초음파 추출(ultrasonic bath (40 kHz; continuous irradiation, interval irradiation), ultrasonicator (20 kHz))을 실시하였다. 그 결과, 총 lancemasides함량은 ultrasonic bath (MeOH; continuous irradiation) 추출에서 가장 높았고, ultrasonic bath (water; continuous irradiation) 추출>ultrasonic bath (MeOH; interval irradiation) 추출>ultrasonicator 추출>열수 추출>메탄올 환류 추출>부탄올 환류 추출 순으로 높았다. 따라서 더덕 사포닌의 최적 추출 방법은 MeOH을 이용한 초음파(ultrasonic bath, 40 kHz) 추출이었고, 추출 전 시료 건조 방법은 동결건조보다 음건으로 건조하는 것이 lancemasides 추출에 더 효과적이었다. 또한 초음파 추출 시 추출 시간은 2시간, 추출 온도는 $64^{\circ}C$에서 추출 하는 것이 효과적임을 확인할 수 있었다. 따라서 초음파(ultrasonic bath)추출은 기존에 주로 이용하던 환류 추출 및 분획을 실시했을 때 보다 많은 양의 사포닌(lancemasides)을 추출할 수 있었다. 그리고 추출 시간과 온도와 같은 추출 조건에 따라 aster saponin Hb가 lancemaside류로 성분 변화가 일어나는 것을 확인하였다. 특히 추출 온도가 증가함에 따라 aster saponin의 함량이 줄어들고, lancemaside A의 함량이 증가하는 것으로 보아 추출 온도가 사포닌 성분 변화에 영향을 주는 것으로 사료된다.

Keywords

SPGHB5_2019_v51n2_103_f0001.png 이미지

Fig. 1. Comparison of lancemasides content in ultrasonic bath (40 kHz) extracts according to extraction times.

SPGHB5_2019_v51n2_103_f0002.png 이미지

Fig. 2. Comparison of lancemasides content in ultrasonic bath (40 kHz) extracts according to extraction temperature.

SPGHB5_2019_v51n2_103_f0003.png 이미지

Fig. 3. Schematic diagram of the proposed fragmentation of aster saponin Hb (m/z 925) and lanceamside A (m/z 1,189) in the native ion mode.

Table 1. Lancemasides content in MeOH reflex extracts of Codonopsis lanceolata according to fraction layer

SPGHB5_2019_v51n2_103_t0001.png 이미지

Table 2. Lancemasides content in Codonopsis lanceolata according to extraction method

SPGHB5_2019_v51n2_103_t0002.png 이미지

Table 3. Lancemasides content in ultrasonicator (20 kHz) extracts according to extraction times and pulse

SPGHB5_2019_v51n2_103_t0003.png 이미지

Table 4. Lancemasides content according to sample dry method before ultrasonic bath (40 kHz) extracts in Codonopsis lanceolata

SPGHB5_2019_v51n2_103_t0004.png 이미지

References

  1. Chae HS, Jung SS. A study on the quality characteristics of yanggaeng with Codonopsis lanceolata skin extracts. Korean J. Food & Nutr. 26: 990-995 (2013) https://doi.org/10.9799/ksfan.2013.26.4.990
  2. Choi MY, Oh HS, Kim JH. Changes of physicochemical properties of cultivated Codonopsis lanceolata stored at various storage conditions. Korean J. Plant Res. 19: 59-67 (2006)
  3. Choi HK, Won EK, Jang YP, Choung SY. Antiobesity effect of Codonopsis lanceolata in high-calorie/high-fat-diet-induced obese rats. Evid. Evid-Based Compl. Alt. 210297 (2013)
  4. Han EG, Sung IS, Moon HG, Cho SY. Effect of Codonopsis lanceolata water extract on the levels of lipid in rats fed high fat diet. J. Korean Soc. Food Sci. Nutr. 27: 940-944 (1998)
  5. He JY, Ma N, Zhu S, Komatsu K, Li ZY, Fu WM. The genus Codonopsis (Campanulaceae): a review of phytochemistry, bioactivity and quality control. J. Nat. Med. 69: 1-21 (2015) https://doi.org/10.1007/s11418-014-0861-9
  6. Ichikawa M, Ohta S, Komoto N, Ushijima M, Kodera Y, Hayama M, Shirota O, Sekita S, Kuroyanagi M. Simultaneous determination of seven saponins in the roots of Codonopsis lanceolata by liquid chromatography-mass spectrometry. J. Nat. Med. 63: 52-57 (2009) https://doi.org/10.1007/s11418-008-0294-4
  7. Jin TY, Wang MH. Quality characteristics of Codonopsis lanceolata tea manufactured with sugar. J. Korean Soc. Food Sci. Nutr. 42: 753-758 (2013) https://doi.org/10.3746/jkfn.2013.42.5.753
  8. Joh EH, Kim DH. Lancemaside A inhibits lipopolysaccharideinduced inflammation by targeting LPS/TLR4 complex. J. Cell. Biochem. 111: 865-871 (2010) https://doi.org/10.1002/jcb.22773
  9. Joh EH, Lee IA, Han SJ, Chae SJ, Kim DH. Lancemaside A ameliorates colitis by inhibiting NF-${\kappa}$B activation in TNBS-induced colitis mice. Int. J. Colorectal Dis. 25: 545-551 (2010) https://doi.org/10.1007/s00384-009-0858-0
  10. Jung IH, Jang SE, Joh EH, Chung J, Han MJ, Kim DH. Lancemaside A isolated from Codonopsis lanceolata and its metabolite echinocystic acid ameliorate scopolamine induced memory and learning deficits in mice. Phytomedicine 20: 84-92 (2012) https://doi.org/10.1016/j.phymed.2012.09.005
  11. Kim CS, Choi KJ, Kim SC, Ko SY, Sung HY, Lee YG. Controls of the hydrolysis of ginseng saponins by neutralization of organic acid in red ginseng extract prepaarations. J. Ginseng Res. 22: 205-210 (1998)
  12. Kim SH, Choi HJ, Oh HT, Chung MJ, Cui CB, Ham SS. Cytoprotective effect by antioxidant activity of Codonopsis lanceolata and Platycodon grandiflorum ethyl acetate fraction in human HepG2 cells. Korean J. Food Sci. Technol. 40: 696-701 (2008)
  13. Kim JP, Chon IJ, Cho HK, Ham IH, Whang WK. The antioxidant and the antidiabetic effects of ethanol extract from biofuntional foods prescriptions. Korean J. Pharmacogn. 35: 98-103 (2004)
  14. Kim JH, Chung MH. Pharmacognostical studies on Codonopsis lanceolata. Korean J. Pharmacogn. 6: 43-47 (1975)
  15. Kim JA, Moon HK, Choi YE. Triterpenoid saponin contents of the leaf, stem and root of Codonopsis lanceolata. Korean Soc. Med. Crop Sci. 22: 1-7 (2014a) https://doi.org/10.7783/KJMCS.2014.22.1.1
  16. Kim EJ, Yang WS, Park JG, Kim HG, Ko JY, Hong YD, Rho HS, Shin SS, Sung GH, Cho JY. Lancemaside A from Codonopsis lanceolata modulates the inflammatory responses mediated by monocytes and macrophages. Mediat. Inflamm. 2014: 405158 (2014b)
  17. Lee JH. Immunostimulatory effect of hot-water extract from Codonopsis lanceolata on lymphocyte and clonal macrophage. Korean J. Food Sci. Technol. 34: 732-736 (2002)
  18. Lee JH, Cho SH, Yun MY, An SK, Jang HH, Lee SN, Song GY. Anti-wrinkle effect of rare ginsenosides, produced from ginsenoside Rd. Kor. J. Aesthet. Cosmetol. 13: 909-916 (2015)
  19. Lee BJ, Jeon SH, Lee SW, Chun HS, Cho YS. Effect of drying methods on the saponin and mineral contents of Platycodon grandiflorum Radix. Korean J. Food Sci. Technol. 46: 636-640 (2014) https://doi.org/10.9721/KJFST.2014.46.5.636
  20. Lee SH, Kang JI, Lee SY. Saponin composition and physico-chemical properties of Korean red ginseng extract as affected by extracting conditions. J. Korean Soc. Food Sci. Nutr. 37: 256-260 (2008) https://doi.org/10.3746/jkfn.2008.37.2.256
  21. Lee KJ, Ma JY, Kim YS. Identification of curcuminoids from turmeric (Curcuma longa) using ultrasonic wave and dipping method. Biotechnol. Bioprocess Eng. 27: 33-39 (2012)
  22. Lee GS, Nam KY, Choi JE. Ginsenoside composition and quality characteristics of red ginseng extracts prepared with different extracting methods. Korean Soc. Med. Crop Sci. 21: 276-280 (2013) https://doi.org/10.7783/KJMCS.2013.21.4.276
  23. Lee KJ, Um BH. Extraction of useful component from natural plants using ultrasound system. Biotechnol. Bioprocess Eng. 23: 101-108 (2008)
  24. MAFRA (Ministry of Agriculture, Food and Rural Affairs). Special Crops Production Performance 2017. Ministry of Agriculture, Food and Rural Affairs, Sejong, Korea, pp. 22-23 (2018)
  25. Nam KY, Choi JE, Park JD. Transformation techniques for the large scale production of ginsenoside Rg3. Korean Soc. Med. Crop Sci. 21: 401-414 (2013) https://doi.org/10.7783/KJMCS.2013.21.5.401
  26. Park SJ, Park DS, Lee SB, He X, Ahn JH, Yoon WB, Lee HY. Enhancement of antioxidant activities of Codonopsis lanceolata and fermented Codonopsis lanceolata by ultra high pressure extraction. Korean J. Food Sci. Technol. 39: 1898-1902 (2010)
  27. Park SJ, Seong DH, Park DS, Kim SS, Gou JG, Ahn JH, Yoon WB, Lee HY. Chemical compositions of fermented Codonopsis lanceolata. J. Korean Soc. Food Sci. Nutr. 38: 396-400 (2009) https://doi.org/10.3746/jkfn.2009.38.3.396
  28. Shibata S, Tanaka O, Ando T, Sado M, Tsushima S, Ohsawa T. Chemical studies on oriental plant drugs. XIV. Protopanaxadiol, a genuine sapogenin of ginseng saponins. Chem. Pharm. Bull. 14: 595-600 (1966) https://doi.org/10.1248/cpb.14.595
  29. Ushijima M, Komoto N, Sugizono Y, Mizuno I, Sumihiro M, Ichikawa M, Hayama M, Kawahara N, Nakane T, Shirota O, Sekita S, Kuroyanagi M. Triterpene glycosides from the roots of Codonopsis lanceolate. Chem. Pharm. Bull. 56: 308-314 (2008) https://doi.org/10.1248/cpb.56.308
  30. Wang CZ, Aung HH, Ni M, Wu JA, Tong R, Wicks S, He TC, Yuan CS. Red american ginseng: Ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots. Planta Med. 73: 669-674 (2007) https://doi.org/10.1055/s-2007-981524
  31. Wang L, Xu ML, Hu JH, Rasmussen SK, Wang MH. Codonopsis lanceolata extract induces G0/G1 arrest and apoptosis in human colon tumor HT-29 cells-involvement of ROS generation and polyamine depletion. Food Chem. Toxicol. 49: 149-154 (2011) https://doi.org/10.1016/j.fct.2010.10.010
  32. Wu J, Lin L, Chau FT. Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrason. Sonochem. 8: 347-352 (2001) https://doi.org/10.1016/S1350-4177(01)00066-9